Inference in high-dimensional online changepoint detection

Abstract

We introduce and study two new inferential challenges associated with the sequential detection of change in a high-dimensional mean vector. First, we seek a confidence interval for the changepoint, and second, we estimate the set of indices of coordinates in which the mean changes. We propose an online algorithm that produces an interval with guaranteed nominal coverage, and whose length is, with high probability, of the same order as the average detection delay, up to a logarithmic factor. The corresponding support estimate enjoys control of both false negatives and false positives. Simulations confirm the effectiveness of our methodology, and we also illustrate its applicability on the US excess deaths data from 2017–2020.

Publication
Journal of the American Statistical Association, 119, pp. 1461–1472

Implementation code is available from GitHub.

Yudong Chen
Yudong Chen
Assistant Professor in Statistics

My research interests include changepoint detection, high-dimensional statistics, robust statistcs, online algorithms and machine learning.