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Abstract

We introduce and study two new inferential challenges associated with the sequential
detection of change in a high-dimensional mean vector. First, we seek a confidence
interval for the changepoint, and second, we estimate the set of indices of coordinates
in which the mean changes. We propose an online algorithm that produces an interval
with guaranteed nominal coverage, and whose length is, with high probability, of the
same order as the average detection delay, up to a logarithmic factor. The corresponding
support estimate enjoys control of both false negatives and false positives. Simulations
confirm the effectiveness of our methodology, and we also illustrate its applicability on
the US excess deaths data from 2017–2020.

1 Introduction

The real-time monitoring of evolving processes has become a characteristic feature of 21st
century life. Watches and defibrillators track health data, Covid-19 case numbers are reported
on a daily basis and financial decisions are made continuously based on the latest market
movements. Given that changes in the dynamics of such processes are frequently of great
interest, it is unsurprising that the area of changepoint detection has undergone a renaissance
over the last 5–10 years.

One of the features of modern datasets that has driven much of the recent research in
changepoint analysis is high dimensionality, where we monitor many processes simultane-
ously, and seek to borrow strength across the different series to identify changepoints. The
nature of series that are tracked in applications, as well as the desire to evade to the greatest
extent possible the curse of dimensionality, means that it is commonly assumed that the signal
of interest is relatively sparse, in the sense that only a small proportion of the constituent
series undergo a change. Furthermore, the large majority of these works have focused on the
retrospective (or offline) challenges of detecting and estimating changes after seeing all of the
available data (e.g. Chan and Walther, 2015; Cho and Fryzlewicz, 2015; Jirak, 2015; Cho,
2016; Soh and Chandrasekaran, 2017; Wang and Samworth, 2018; Enikeeva and Harchaoui,
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2019; Padilla et al., 2021; Kaul et al., 2021; Liu et al., 2021; Londschien et al., 2021; Rinaldo
et al., 2021; Follain et al., 2022). Nevertheless, the related problem where one observes data
sequentially and seeks to declare changes as soon as possible after they have occurred, is
nowadays receiving increasing attention (e.g. Kirch and Stoehr, 2019; Dette and Gösmann,
2020; Gösmann et al., 2020; Yu et al., 2021b; Chen et al., 2022). Although the focus of our
review here has been on recent developments, including finite-sample results in multivariate
and high-dimensional settings, we also mention that changepoint analysis has a long history
(e.g. Page, 1954). Entry points to this classical literature include Csörgő and Horváth (1997)
and Horváth and Rice (2014). For univariate data, sequential changepoint detection is also
studied under the banner of statistical process control (Duncan, 1952; Tartakovsky et al.,
2014). In the field of high-dimensional statistical inference more generally, uncertainty quan-
tification has become a major theme over the last decade, originating with influential work on
the debiased Lasso in (generalized) linear models (Javanmard and Montanari, 2014; van de
Geer et al., 2014; Zhang and Zhang, 2014), and subsequently developed in other settings (e.g.
Janková and van de Geer, 2015; Yu et al., 2021a).

The aim of this paper is to propose methods to address two new inferential challenges
associated with the high-dimensional, sequential detection of a sparse change in mean. The
first is to provide a confidence interval for the location of the changepoint, while the second
is to estimate the signal set of indices of coordinates that undergo the change. Despite the
importance of uncertainty quantification and signal support recovery in changepoint appli-
cations, neither of these problems has previously been studied in the multivariate sequential
changepoint detection literature, to the best of our knowledge. Of course, one option here
would be to apply an offline confidence interval construction (e.g., Kaul et al., 2021) after a
sequential procedure has declared a change. However, this would be to ignore the essential
challenge of the sequential nature of the problem, whereby one wishes to avoid storing all
historical data, to enable inference to be carried out in an online manner. By this we mean
that the computational complexity for processing each new observation, as well as the storage
requirements, should depend only on the number of bits needed to represent the new data
point observed1. The online requirement turns out to impose severe restrictions on the class of
algorithms available to the practitioner, and lies at the heart of the difficulty of the problem.

To give a brief outline of our construction of a confidence interval with guaranteed (1−α)-
level coverage, consider for simplicity the univariate setting, where (Xn)n∈N form a sequence

of independent random variables with X1, . . . , Xz
iid∼ N (0, 1) and Xz+1, Xz+2, . . .

iid∼ N (θ, 1).
Without loss of generality, we assume that θ > 0. Suppose that θ is known to be at least
b > 0 and, for n ∈ N, define residual tail lengths

tn,b := argmax
0≤h≤n

n∑
i=n−h+1

(Xi − b/2). (1)

In the case of a tie, we choose the smallest h achieving the maximum. Since
∑n

i=n−h+1(Xi −
b/2) can be viewed as the likelihood ratio statistic for testing the null of N (0, 1) against the

1Here, we ignore the errors in rounding real numbers to machine precision; thus, we do not distinguish
between continuous random variables and quantized versions where the data have been rounded to machine
precision.
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alternative of N (b, 1) using Xn−h+1, . . . , Xn, the quantity tn,b is the tail length for which the
likelihood ratio statistic is maximized. If N is the stopping time defining a good sequen-
tial changepoint detection procedure, then, intuitively, N − tN,b should be close to the true
changepoint location z, and almost pivotal. This motivates the construction of a confidence
interval of the form

[
max

{
N − tN,b − g(α, b), 0

}
, N
]
, where we control the tail probability

of the distribution of N − tN,b to choose g(α, b) so as to ensure the desired coverage. In
the multivariate case, considerable care is required to handle the post-selection nature of the
inferential problem, as well as to determine an appropriate left endpoint for the confidence
interval. For this latter purpose, we only assume a lower bound on the Euclidean norm of
the vector of mean change, and employ a delicate multivariate and multiscale aggregation
scheme; see Section 2 for details, as well as Section 3.5 for further discussion.

The procedure for the inference tasks discussed above, which we call ocd CI (short for
online changepoint detection Confidence Intervals), can be run in conjunction with any
base sequential changepoint detection procedure. However, we recommend using the ocd

algorithm introduced by Chen et al. (2022), or its variant ocd′, which provides guarantees
on both the average and worst-case detection delays, subject to a guarantee on the patience,
or average false alarm rate under the null hypothesis of no change. Crucially, these are both
online algorithms. The corresponding inferential procedures inherit this same online property,
thereby making them applicable even in very high-dimensional settings and where changes
may be rare, so we may need to see many new data points before declaring a change.

In Section 3 we study the theoretical performance of the ocd CI procedure. In particular,
we prove in Theorem 1 that, whenever the base sequential detection procedure satisfies a
patience and detection delay condition, the confidence interval has at least nominal coverage
for a suitable choice of input parameters. Theorem 2 provides a corresponding guarantee on
the length of the interval. In Section 3.3, we show that by using ocd′ as the base procedure,
the aforementioned patience and detection delay condition is indeed satisfied. As a result, the
output confidence interval has guaranteed nominal coverage and the length of the interval is
of the same order as the average detection delay for the base ocd′ procedure, up to a poly-
logarithmic factor. This is remarkable in view of the intrinsic challenge that the better such
a changepoint detection procedure performs, the fewer post-change observations are available
for inferential tasks.

A very useful byproduct of our ocd CI methodology is that we obtain a natural estimate
of the set of signal coordinates (i.e. those that undergo change). In Theorem 3, we prove
that, with high probability, it is able both to recover the effective support of the signal (see
Section 3.1 for a formal definition), and to avoid noise coordinates. We then broaden the scope
of applicability of our methodology in Section 3.4 by relaxing our distributional assumptions
to deal with sub-Gaussian or sub-exponential data. Finally, in Section 3.5, we introduce
a modification of our algorithm that permits an arbitrarily loose lower bound β > 0 on the
Euclidean norm of the vector of mean change to be employed, with only a logarithmic increase
in the confidence interval length guarantee and the computational cost.

An attraction of our theoretical results is that we are able to handle arbitrary spatial
(cross-sectional) dependence between the different coordinates of our data stream. On the
other hand, two limitations of our analysis for practical use are that real data may exhibit
both heavier than sub-exponential tails and temporal dependence. While a full theoretical
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analysis of the ocd CI algorithm in these contexts appears to be challenging, we have made
some practical suggestions regarding these issues in Sections 3.4 and 4.4 respectively.

Section 4 is devoted to a study of the numerical performance of our methodological pro-
posals. Our simulations confirm that the ocd CI methodology (with the ocd base procedure)
attains the desired coverage level across a wide range of parameter settings, that the average
confidence interval length is of comparable order to the average detection delay and that our
support recovery guarantees are validated empirically. We further demonstrate the way in
which naive application of offline methods may lead to poor performance in this problem.
Moreover, in Section 4.4, we apply our methods to excess death data from the Covid-19 pan-
demic in the US. Proofs, auxiliary results, extensions to sub-Gaussian and sub-exponential
settings and additional simulation results are provided in the supplementary material (Sec-
tion 5).

We conclude this introduction with some notation used throughout the paper. We write
N0 for the set of all non-negative integers. For d ∈ N, we write [d] := {1, . . . , d}. Given
a, b ∈ R, we denote a ∨ b := max(a, b) and a ∧ b := min(a, b). For a set S, we use
1S and |S| to denote its indicator function and cardinality respectively. For a real-valued
function f on a totally ordered set S, we write sargmaxx∈S f(x) := min argmaxx∈S f(x)
and largmaxx∈S f(x) := max argmaxx∈S f(x) for the smallest and largest maximizers of
f in S, and define sargminx∈S f(x) and largminx∈S f(x) analogously. For a vector v =(
v1, . . . , vM

)> ∈ RM , we define ‖v‖0 :=
∑M

i=1 1{vi 6=0}, ‖v‖2 :=
{∑M

i=1(vi)2
}1/2

and ‖v‖∞ :=

maxi∈[M ] |vi|. In addition, for j ∈ [M ], we define ‖v−j‖2 :=
{∑

i:i 6=j(v
i)2
}1/2

. For a ma-

trix A = (Ai,j) ∈ Rd1×d2 and j ∈ [d2], we write A·,j :=
(
A1,j, . . . , Ad1,j

)> ∈ Rd1 and

A−j,j :=
(
A1,j, . . . , Aj−1,j, Aj+1,j . . . , Ad1,j

)> ∈ Rd1−1. We use Φ(·), Φ̄(·) and φ(·) to de-
note the distribution function, survivor function and density function of the standard normal
distribution respectively. For two real-valued random variables U and V , we write U ≥st V
or V ≤st U if P(U ≤ x) ≤ P(V ≤ x) for all x ∈ R. We adopt conventions that an empty sum
is 0 and that min ∅ :=∞, max ∅ := −∞.

2 Confidence interval construction and support estima-

tion methodology

In the multivariate sequential changepoint detection problem, we observe p-variate observa-
tions X1, X2, . . . in turn, and seek to report a stopping time N by which we believe a change
has occurred. Here and throughout, a stopping time is understood to be with respect to
the natural filtration, so that the event {N = n} belongs to the σ-algebra generated by
X1, . . . , Xn. The focus of this work is on changes in the mean of the underlying process, and
we denote the time of the changepoint by z. Moreover, since our primary interest is in high-
dimensional settings, we will also seek to exploit sparsity in the vector of mean change. Given
α ∈ (0, 1), then, our primary goal is to construct a confidence interval C ≡ C(X1, . . . , XN , α)
with the property that z ∈ C with probability at least 1− α.

For i ∈ N and j ∈ [p], let Xj
i denote the jth coordinate of Xi. The ocd CI algorithm

relies on a lower bound β > 0 for the `2-norm of the vector of mean change, sets of signed
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scales B and B0 defined in terms of β and a base sequential changepoint detection procedure
CP. As CP processes each new data vector, we update the matrix of residual tail lengths
(tjn,b)j∈[p],b∈B∪B0 with tjn,b := sargmax0≤h≤n

∑n
i=n−h+1(Xj

i − b/2), as well as corresponding tail

partial sum vectors
(
A·,jn,b

)
j∈[p],b∈B∪B0

, where Aj
′,j
n,b :=

∑n
i=n−tjn,b+1X

j′

i .

After the base procedure CP declares a change at a stopping time N , we identify an
“anchor” coordinate ĵ ∈ [p] and a signed anchor scale b̂ ∈ B, where

(ĵ, b̂) := argmax
(j,b)∈[p]×B

∑
j′∈[p]\{j}

(
Aj
′,j
N,b

)2

tjN,b ∨ 1
1{
|Aj
′,j
N,b|≥a

√
tjN,b∨1

}.
The intuition is that the anchor coordinate and signed anchor scale are chosen so that the

final tĵ
N,b̂

observations provide the best evidence among all of the residual tail lengths against

the null hypothesis of no change. Meanwhile, A·,ĵ
N,b̂

aggregates the last tĵ
N,b̂

observations in

each coordinate, providing a measure of the strength of this evidence against the null.
The main idea of our confidence interval construction is to seek to identify coordinates with

large post-change signal. To this end, observe when tĵ
N,b̂

is not too much larger than N−z, the

quantity Ej,ĵ

N,b̂
:= Aj,ĵ

N,b̂
/(tĵ

N,b̂
∨1)1/2 should be centered close to θj(tĵ

N,b̂
)1/2 for j ∈ [p]\{ĵ}, with

variance close to 1. Indeed, if ĵ, b̂, N and tĵ
N,b̂

were fixed, and if 0 < tĵ
N,b̂
≤ N − z, then the

former quantity would have unit variance around this centering value. The random nature
of these quantities, however, introduces a post-selection inference aspect to the problem.
Nevertheless, by choosing an appropriate threshold value d1 > 0, we can ensure that with

high probability, when j 6= ĵ is a noise coordinate, we have |Ej,ĵ

N,b̂
| < d1, and when j 6= ĵ is a

coordinate with sufficiently large signal, there exists a signed scale b ∈ (B ∪B0)∩ [−|θj|, |θj|],
having the same sign as θj, for which

∣∣Ej,ĵ

N,b̂

∣∣− |b|(tĵ
N,b̂

)1/2 ≥ d1. In fact, such a signed scale, if

it exists, can always be chosen to be from B0. As a convenient byproduct, the set of indices j
for which the latter inequality holds, which we denote as Ŝ, forms a natural estimate of the
set of coordinates in which the mean change is large.

For each j ∈ Ŝ, there exists a largest scale b ∈ (B ∪ B0) ∩ (0,∞) for which
∣∣Ej,ĵ

N,b̂

∣∣ −
b(tĵ

N,b̂
)1/2 ≥ d1. We denote the signed version of this quantity, where the sign is chosen to

agree with that of Ej,ĵ

N,b̂
, by b̃j; this can be regarded as a shrunken estimate of θj, so plays the

role of the lower bound b from the univariate problem discussed in the introduction. Finally,
then, our confidence interval is constructed as the intersection over indices j ∈ Ŝ of the
confidence interval from the univariate problem in coordinate j, with signed scale b̃j.

As a device to facilitate our theory, the ocd CI algorithm allows the practitioner the pos-
sibility of observing a further ` observations after the time of changepoint declaration, before
constructing the confidence interval. The additional observations are used to determine the
anchor coordinate ĵ and scale b̂, as well as the estimated support Ŝ and the estimated scale
b̃j for each j ∈ Ŝ. Thus, the extra sampling is used to guard against an unusually early
changepoint declaration that leaves very few post-change observations for inference. Never-
theless, we will see in Theorem 1 below that the output confidence interval has guaranteed
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nominal coverage even with ` = 0, so that additional observations are only used to control the
length of the interval. In fact, even for this latter aspect, the numerical evidence presented in
Section 4 indicates that ` = 0 provides confidence intervals of reasonable length in practice.
Similarly, Theorem 3 ensures that with high probability, our support estimate Ŝ contains no
noise coordinates (i.e. has false positive control) even with ` = 0, so that the extra sampling
is only used to provide false negative control.

Pseudo-code for this ocd CI confidence interval construction is given in Algorithm 1,
where we suppress the n dependence on quantities that are updated at each time step. The
computational complexity per new observation, as well as the storage requirements, of this
algorithm is equal to the sum of the corresponding quantities for the CP base procedure and
O
(
p2 log(ep)

)
regardless of the observation history. Thus the ocd CI method inherits the

property of being an online algorithm, as discussed in the introduction, from any online CP
base procedure.

Algorithm 1: Pseudo-code for the confidence interval construction algorithm ocd CI

Input: X1, X2, . . . ∈ Rp observed sequentially, β > 0, a ≥ 0, an online changepoint
detection procedure CP, d1, d2 > 0 and ` ∈ N0

Set: bmin = β√
2blog2(2p)c log2(2p)

, B0 = {±bmin},

B =
{
±2m/2bmin : m = 1, . . . , blog2(2p)c

}
, n = 0, Ab = 0 ∈ Rp×p and tb = 0 ∈ Rp

for all b ∈ B ∪ B0

repeat
n← n+ 1
observe new data vector Xn and update CP with Xn

for (j, b) ∈ [p]× (B ∪ B0) do

tjb ← tjb + 1
A·,j
b ← A·,j

b +Xn

if bAj,jb − b2tjb/2 ≤ 0 then

tjb ← 0 and A·,j
b ← 0

until CP declares a change;
Observe ` new data vectors Xn+1, . . . , Xn+`

Set Ej′,j
b ← Aj

′,j
b +

∑n+`
i=n+1X

j′
i√

(tjb+`)∨1
for j′, j ∈ [p], b ∈ B ∪ B0

Compute Qj
b ←

∑
j′∈[p]\{j}(E

j′,j
b )2

1{|Ej
′,j
b |≥a} for j ∈ [p], b ∈ B

(ĵ, b̂)← argmax(j,b)∈[p]×BQ
j
b

Ŝ ←
{
j ∈ [p] \ {ĵ} :

∣∣Ej,ĵ

b̂

∣∣− bmin(tĵ
b̂

+ `)1/2 ≥ d1

}
for j ∈ Ŝ do

b̃j ← sgn
(
Ej,ĵ

b̂

)
max

{
b ∈ (B ∪ B0) ∩ (0,∞) :

∣∣Ej,ĵ

b̂

∣∣− b(tĵ
b̂

+ `)1/2 ≥ d1

}
Output: Confidence interval C =

[
max

{
n−minj∈Ŝ

{
tj
b̃j

+ d2

(b̃j)2

}
, 0
}
, n
]

A natural choice for the base online changepoint detection procedure CP is the ocd algo-
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rithm, or its variant ocd′, introduced by Chen et al. (2022). Both are online algorithms, with
computational complexity per new observation and storage requirements of O

(
p2 log(ep)

)
.

The ocd′ base procedure is considered for the theoretical analysis in Section 3 due to its
known patience and detection delay guarantees, while we prefer ocd for numerical studies
and practical use. For the reader’s convenience, the ocd and ocd′ algorithms are provided as
Algorithms 2 and 3 respectively in Section 5.3.

3 Theoretical analysis

Throughout this section, we will assume that the sequential observations X1, X2, . . . are inde-
pendent, and that for some unknown covariance matrix Σ ∈ Rp×p whose diagonal entries are
all equal to 1, there exist z ∈ N0 and θ = (θ1, . . . , θp)> 6= 0 for which X1, . . . , Xz ∼ Np(0,Σ)
and Xz+1, Xz+2, . . . ∼ Np(θ,Σ). We let ϑ := ‖θ‖2, and write Pz,θ,Σ for probabilities computed
under this model, though in places we omit the subscripts for brevity. Define the effective
sparsity of θ, denoted s(θ), to be the smallest s ∈

{
20, 21, . . . , 2blog2(p)c} such that the cor-

responding effective support S(θ) :=
{
j ∈ [p] : |θj| ≥ ‖θ‖2/

√
s log2(2p)

}
has cardinality at

least s(θ). Thus, the sum of squares of coordinates in the effective support of θ has the same
order of magnitude as ‖θ‖2

2, up to logarithmic factors. Moreover, if at most s components
of θ are non-zero, then s(θ) ≤ s, and the equality is attained when, for example, all non-zero
coordinates have the same magnitude.

For r > 0 and an online changepoint detection procedure CP characterized by an extended
stopping time N , we define

g(r;N) := sup
z∈N0

Pz,θ,Σ(N > z + r). (2)

3.1 Coverage Probability and Length of the Confidence Interval

The following theorem shows that the confidence interval constructed in the ocd CI algorithm
has the desired coverage level whenever the base online changepoint detection procedure
satisfies a patience and detection delay condition.

Theorem 1. Let p ≥ 2 and fix α ∈ (0, 1). Suppose that ϑ ≥ β > 0. Let CP be an online
changepoint procedure characterized by an extended stopping time N satisfying

Pz,θ,Σ(N ≤ z) + g(r;N) + 4rp2 log2
2(4p)e−rβ

2/(8s log2(2p)) ≤ 3

4
α (3)

for some r ≥ 1. Then, with inputs (Xt)t∈N, β > 0, a ≥ 0, CP, d1 =
√

5rβ2

9s log2(2p)
, d2 = 4d2

1 and

` ≥ 0, the output confidence interval C from Algorithm 1 satisfies

Pz,θ,Σ(z ∈ C) ≥ 1− α.

As mentioned in Section 2, our coverage guarantee in Theorem 1 holds even with ` =
0, i.e. with no additional sampling. Condition (3) places a joint assumption on the base
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changepoint procedure CP and the parameter r, the latter of which appears in the inputs d1

and d2 of Algorithm 1. The first term on the left-hand side of (3) is the false alarm rate of
the stopping time N associated with CP. The second term can be interpreted as an upper
bound on the probability of the detection delay of N being larger than r, and in addition
we also need r to be at least of order s/β2 up to logarithmic factors for the third term to
be sufficiently small. See Section 3.3 for further discussion, where in particular we provide a
choice of r for which (3) holds with the ocd′ base procedure.

We now provide a guarantee on the length of the ocd CI confidence interval.

Theorem 2. Fix α ∈ (0, 1). Assume that θ has an effective sparsity of s := s(θ) ≥ 2 and that
ϑ ≥ β > 0. let CP be an online changepoint detection procedure characterized by an extended
stopping time N that satisfies (3) for some r ≥ 1. Then there exists a universal constant

C > 0 such that, with inputs (Xt)t∈N, β > 0, a = C
√

log(rp/α), CP, d1 =
√

5rβ2

9s log2(2p)
,

d2 = 4d2
1, ` ≥ 80r, the length L of the output confidence interval C satisfies

Pz,θ,Σ(L > 8r) ≤ α.

As mentioned following Theorem 1, we can take r to be the maximum of an appropriate
quantile of the detection delay distribution of CP and a quantity that is of order s/β2 up
to logarithmic factors. The main conclusion of Theorem 2 is that, with high probability,
the length of the confidence interval is then of this same order r. Whenever the quantile
of the detection delay distribution achieves the maximum above — which is the case, up to
logarithmic factors, for the ocd′ base procedure (see Proposition 5) — we can conclude that
with high probability, the length of the ocd CI confidence interval is of the same order as
this detection delay quantile (which is the best one could hope for). Note that the choices of
inputs in Theorem 2 are identical to those in Theorem 1, except that we now ask for order r
additional observations after the changepoint declaration.

3.2 Support Recovery

Recall the definition of S(θ) from the beginning of this section, and denote Sβ(θ) :=
{
j ∈

[p] : |θj| ≥ bmin

}
, where bmin, defined in Algorithm 1, is the smallest positive scale in B ∪ B0,

We will suppress the dependence on θ of both these quantities in this subsection. Theorem 3
below provides a support recovery guarantee for Ŝ, defined in Algorithm 1. Since neither Ŝ
nor the anchor coordinate ĵ defined in the algorithm depend on d2, we omit its specification;
the choices of other tuning parameters mimic those in Theorems 1 and 2.

Theorem 3. Let p ≥ 2 and fix α ∈ (0, 1). Suppose that ϑ ≥ β > 0. Let CP be an online
changepoint detection procedure characterized by an extended stopping time N that satisfies (3)
for some r ≥ 1.

(a) Then, with inputs (Xt)t∈N, β > 0, a ≥ 0, CP, d1 =
√

5rβ2

9s log2(2p)
, ` ≥ 0, we have

Pz,θ,Σ(Ŝ ⊆ Sβ) ≥ 1− α.
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(b) Now assume that θ has an effective sparsity of s := s(θ) ≥ 2. Then there exists a
universal constant C > 0 such that, with inputs (Xt)t∈N, β > 0, a = C

√
log(rp/α), CP,

d1 =
√

5rβ2

9s log2(2p)
, ` ≥ 80r, we have

Pz,θ,Σ(Ŝ ∪ {ĵ} ⊇ S) ≥ 1− α.

Note that S ⊆ Sβ ⊆ {j ∈ [p] : θj 6= 0}. Thus, part (a) of the theorem reveals that with

high probability, our support estimate Ŝ does not contain any noise coordinates. Part (b)
offers a complementary guarantee on the inclusion of all “big” signal coordinates, provided we
augment our support estimate with the anchor coordinate ĵ. See also the further discussion
of this result following Proposition 4 below and in Section 3.3.

We now turn our attention to the optimality of our support recovery algorithm, by estab-
lishing a complementary minimax lower bound on the performance of any support estimator.
In fact, we can already establish this optimality by restricting the cross-sectional covariance
matrix to be the identity matrix. Thus, given θ ∈ Rp and z ∈ N0, we write Pz,θ for a proba-
bility measure under which (Xn)n∈N are independent with Xn ∼ Np(θ1{n>z}, Ip). For r > 0
and m ∈ [p] ∪ {0}, write

Θr,m :=
{
θ ∈ Rp : |{j ∈ [p] : |θj| ≤ 1/(8

√
r)}| ≥ m

}
.

Define T to be the set of stopping times with respect to the natural filtration (Fn)n∈N0 , and
set

Tr,m :=

{
N ∈ T : sup

z∈N∪{0},θ∈Θr,m

Pz,θ(N > z + r) ≤ 1

4

}
.

Write 2[p] for the power set of [p], equipped with the symmetric difference metric d : (A,B) 7→
|(A \B) ∪ (B \ A)|. For any stopping time N , denote

JN := {ψ : (Rp)∞ → 2[p] : ψ is FN -measurable},

where we recall that ψ is said to be FN -measurable if for any A ∈ 2[p] and n ∈ N0, we have
that ψ−1(A) ∩ {N = n} is Fn-measurable.

Proposition 4. For r > 0 and m ≥ 15, we have

inf
N∈Tr,m

inf
ψ∈JN

sup
z∈N0,θ∈Θr,m

Ez,θ d
(
ψ(X1, X2, . . .), supp(θ)

)
≥ m

32
.

This proposition considers any support estimation algorithm obtained from a stopping
time in Tr,m, and we note that such a competing procedure is even allowed to store all data
up to this stopping time, in contrast to our online algorithm. This result can be interpreted as
an optimality guarantee for the support recovery property of the ocd CI algorithm presented
in Theorem 3(b), provided that the base procedure N belongs to the class Tr,m, and that N
and r satisfy (3). See Section 3.3 below for further discussion.

9



3.3 Using ocd′ as the Base Procedure

In this subsection, we provide a value of r that suffices for condition (3) to hold when we take
our base procedure to be ocd′. For the convenience of the reader, this algorithm is presented
as Algorithm 3 in Section 5.3, where we also provide interpretation to the input parameters
ã, T diag and T off .

Proposition 5. Fix α ∈ (0, 1) and γ > 0. Assume that θ has an effective sparsity of
s := s(θ) ≥ 2, that ϑ ≥ β > 0 and that z ≤ 2αγ. Then with inputs (Xt)t∈N, β > 0,
ã =

√
2 log{16p2γ log2(2p)}, T diag = log{16pγ log2(4p)} and T off = 8 log{16pγ log2(2p)} in

the ocd′ procedure, there exists a universal constant C ′ > 0 such that for all

r ≥ C ′s log2(2p) log{pγα−1(β−2 ∨ 1)}
β2

+ 2 =: r1, (4)

the output N satisfies (3).

By combining Proposition 5 with Theorems 1, 2 and 3 respectively, we immediately arrive
at the following corollary.

Corollary 6. Fix α ∈ (0, 1), γ > 0. Assume that θ has an effective sparsity of s := s(θ) ≥ 2,
that ϑ ≥ β > 0 and that z ≤ 2αγ. Let (Xt)t∈N, β > 0, ã =

√
2 log{16p2γ log2(2p)},

T diag = log{16pγ log2(4p)} and T off = 8 log{16pγ log2(2p)} be the inputs of the ocd′ procedure.
Then the following statements hold:

(a) With extra inputs a ≥ 0, CP = ocd′, d1 =
√

5r1β2

9s log2(2p)
, d2 = 4d2

1 and ` ≥ 0 for Algorithm 1,

the output confidence interval C and the support estimate Ŝ satisfy Pz,θ,Σ(z ∈ C) ≥ 1− α and

Pz,θ,Σ(Ŝ ⊆ Sβ) ≥ 1− α.

(b) There exists a universal constant C > 0 such that, with extra inputs a = C
√

log(r1p/α),

CP = ocd′, d1 =
√

5r1β2

9s log2(2p)
, d2 = 4d2

1, ` ≥ 80r1 for Algorithm 1, the length L of the output

confidence interval C and the support estimate satisfy Pz,θ,Σ(L > 8r1) ≤ α and Pz,θ,Σ(Ŝ∪{ĵ} ⊇
S) ≥ 1− α.

Corollary 6 reveals that, when ocd′ is used as the base procedure, the ocd CI methodology
provides guaranteed confidence interval coverage. Moreover, up to poly-logarithmic factors,
with an additional O

(
1 ∨ (s/β2)

)
post-change observations, the ocd CI interval length is of

the same order as the average detection delay. In terms of signal recovery, Corollary 6(b)
shows that with high probability, ocd CI with inputs as given in that result selects all signal
coordinates whose magnitude exceeds ϑ/s1/2, up to logarithmic factors. Focusing on the case
β = ϑ and where s/ϑ2 is bounded away from zero for simplicity of discussion (though see also
Section 3.5 for discussion of the effect of the choice of β), Proposition 10 also reveals that
the ocd′ base procedure belongs to Tr,m with r of order s/ϑ2, up to logarithmic factors, and
m = |{j : |θj| ≤ 1/(8

√
r)}|. On the other hand, Proposition 4 shows that any such support

estimation algorithm makes on average a non-vanishing fraction of errors in distinguishing
between noise coordinates and signals that are below the level ϑ/s1/2, again up to logarithmic
factors. In other words, with high probability, the ocd CI algorithm with base procedure ocd′

selects all signals that are strong enough (up to logarithmic factors) to be reliably detected,
while at the same time including no noise coordinates (see Corollary 6(a)).
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3.4 Relaxing the Gaussianity assumption

It is natural to ask to what extent the theory of Sections 3.1, 3.2 and 3.3 can be generalised
beyond the Gaussian setting. The purpose of this subsection, then, is to describe how our
earlier results can be modified to handle both sub-Gaussian and sub-exponential data. Recall
that we say a random variable Z with EZ = 0 is sub-Gaussian with variance parameter
σ2 > 0 if EeλZ ≤ eσ

2λ2/2 for all λ ∈ R, and is sub-exponential with variance parameter σ2 > 0
and rate parameter A > 0 if EeλZ ≤ eσ

2λ2/2 for all |λ| ≤ A.
We first consider the sub-Gaussian setting where X1, . . . , Xz, Xz+1 − θ,Xz+2 − θ, . . . are

independent, each having sub-Gaussian components with variance parameter 1. Note that
this data generating mechanism no longer requires all pre-change observations to be identically
distributed, and likewise the post-change observations need not all have the same distribution.
We assume that the base changepoint procedure, characterized by an extended stopping time
N , satisfies a slightly strengthened version of (3), namely that

Pz,θ,Σ(N ≤ z) + g(r;N) + 100rp2 log3
2(4p)(pβ−2 ∨ 1)e−rβ

2/(8s log2(2p)) ≤ 3

4
α. (5)

for some r ≥ 1. Under (5), Theorems 1, 2 and 3 hold with the same choices of input
parameters. Moreover, the ocd′ base procedure satisfies the conclusion of Proposition 5,
i.e. there exists a universal constant C ′ > 0 such that (5) holds for r ≥ r1 = r1(C ′) in (4),

provided that we use the modified input ã =
√

2 log
{

32p2γ log2(2p)
}

.

Generalising these ideas further, now consider the model whereX1, . . . , Xz, Xz+1−θ,Xz+2−
θ, . . . are independent, each having sub-exponential components with variance parameter
1 and rate parameter A > 0. In this setting, provided the base procedure satisfies (5)
for some r ≥ 1 and ϑ ≤

√
2A2 log2(2p), Theorems 1, 2 and 3 hold when we redefine

a := C max
{√

log(rp/α), 1
A

log(rp/α)
}

and d1 := max
{√

5rβ2

9s log2(2p)
, 5rβ2

9As log2(2p)

}
. Further-

more, with the modified input ã =
√

2 log
{

32p2γ log2(2p)
}
∨ 2

A
log
{

32p2γ log2(2p)
}

, the ocd′

base procedure satisfies the conclusion of Proposition 5 for

r ≥ C ′s log2(2p) log2{pγα−1(β−2 ∨ 1)}max{1, A−2 log(pγ)}
β2

+ 2,

where C ′ > 0 is a universal constant.
The claims made in the previous two paragraphs are justified in Section 5.4. These results

confirm the flexible scope of the ocd CI methodology beyond the original Gaussian setting, at
least as far as sub-exponential tails are concerned. Where data may exhibit heavier tails than
this, clipping (truncation) and quantile transformations may represent viable ways to proceed,
though further research is needed to confirm the theoretical validity of such approaches.

3.5 Confidence interval construction with unknown signal size

In some settings, an experienced practitioner may have a reasonable idea of the magnitude ϑ
of the `2-norm of the vector of mean change that would be of interest to them, and this
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would facilitate a choice of a lower bound β for ϑ in Algorithm 1. However, it is also worth
considering the effect of this choice, and the extent to which its impact can be mitigated.

We first remark that the coverage probability guarantee for the ocd CI interval in Corol-
lary 6 remains valid for any (arbitrarily loose) lower bound β on ϑ. The only issue is in terms
of power: if β is chosen to be too small, then both the average detection delay and the high-
probability bound on the length of the confidence interval may be inflated. In the remainder
of this subsection, then, we describe a simple modification to Algorithm 1 that permits a loose
lower bound β to be employed that retains coverage validity with only a logarithmic effect on
the high-probability bound on the length of the confidence interval. The only other price we
pay is that the computational cost increases as β decreases, as we describe below.

Our change to Algorithm 1 is as follows: we replace the definition of bmin by setting

bmin =
β√

2blog2(2p)c log2(2p)
∧ 1√

2
,

set M = d2 log2(1/bmin)e and define B =
{
±2m/2bmin : m ∈ [M ]} in both the ocd′ base

procedure and in Algorithm 1. The rest of algorithm remains as previously stated. Thus,
if we choose a conservative (very small) β, then the effect of the modification is to increase
the number of scales on which we search for a change, so that the largest element of B is
of order 1. In order to state our theoretical results for this modified algorithm, first define

bopt := max
{
b ∈ B ∩ (0,∞) : b ≤ ϑ√

s log2(2p)

}
, which satisfies bopt ≥ ϑ√

2s log2(2p)
∧ 1. Under

the same assumptions as in Proposition 5, and modifying the inputs to (Xt)t∈N, β > 0,
ã =

√
2 log(16p2γM), T diag = log

(
16pγ(M + 1)

)
and T off = 8 log(16pγM), it can be shown

using very similar arguments to those in the proof of Proposition 5 that there exists a universal
constant C ′ > 0 such that with r ≥ C ′b−2

opt log
(
pγα−1(β−2 ∨ 1)

)
=: r1, the output N satisfies

Pz,θ,Σ(N ≤ z) + g(r;N) + 4rp2(M + 1)2e−rb
2
opt/8 ≤ 3

4
α.

With this in place, we can derive Corollary 7 below, which is the analog of Corollary 6 for
our modified algorithm.

Corollary 7. Fix α ∈ (0, 1), γ > 0. Assume that θ has an effective sparsity of s := s(θ) ≥ 2,
that ϑ ≥ β > 0 and that z ≤ 2αγ. Let (Xt)t∈N, β > 0, ã =

√
2 log(16p2γM), T diag =

log
(
16pγ(M + 1)

)
and T off = 8 log(16pγM) be the inputs of the modified ocd′ procedure. Let

d1 =
√

5C ′ log
(
pγα−1(β−2 ∨ 1)

)
/9 and d2 = 4d2

1. Then the following statements hold:

(a) With extra inputs CP = ocd′, a ≥ 0, and ` ≥ 0 for the modified Algorithm 1, the
output confidence interval C and the support estimate Ŝ satisfy Pz,θ,Σ(z ∈ C) ≥ 1 − α and

Pz,θ,Σ(Ŝ ⊆ Sβ) ≥ 1− α.

(b) There exists a universal constant C > 0 such that, with extra inputs CP = modified ocd′,

a = C
√

log
(
pγα−1(β−2 ∨ 1)

)
, and ` ≥ 80r1 for the modified Algorithm 1, the length L of the

output confidence interval C and the support estimate satisfy

Pz,θ,Σ
(
L > 8C ′max

{
2s log2(2p)

ϑ2
, 1

}
log
(
pγα−1(β−2 ∨ 1)

))
≤ α (6)
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and Pz,θ,Σ(Ŝ ∪ {ĵ} ⊇ S) ≥ 1− α.

The main difference between Corollaries 7 and 6 concerns the high-probability guarantees
on the length of the confidence interval. Ignoring logarithmic factors, with high probability
the length of the confidence interval in the modified algorithm is at most of order (s/ϑ2)∨ 1,
whereas for the original algorithm it was of order (s/β2) ∨ 1. Thus, the modified algorithm
has the significant advantage of enabling a conservative choice of β with only a logarithmic
effect on the length guarantee relative to an oracle procedure with knowledge of ‖θ‖2. The
computational complexity per new observation and the storage requirements of this modified

algorithm are O
(
p2
(
log(ep) + log(1/β)

))
, so the order of magnitude is increased relative to

the original algorithm only in an asymptotic regime where β is small by comparison with 1/pK

for every K > 0. Moreover, the modified algorithm still does not require storage of historical
data and the computational time per new observation after observing n observations does
not increase with n. Nevertheless, since the computational complexity now depends on β,
the modified algorithm does not strictly satisfy our definition of an online algorithm given in
introduction.

4 Numerical studies

In this section, we study the empirical performance of the ocd CI algorithm. Throughout this
section, by default, the ocd CI algorithm is used in conjunction with the recommended base
online changepoint detection procedure CP = ocd.

4.1 Tuning Parameters

Chen et al. (2022) found that the theoretical choices of thresholds T diag and T off for the ocd

procedure were a little conservative, and therefore recommended determining these thresholds
via Monte Carlo simulation; we replicate the method for choosing these thresholds described
in their Section 4.1. Likewise, as in Chen et al. (2022), we take a = ã =

√
2 log p in our

simulations.
For d1 and d2, as suggested by our theory, we take d2 = 4d2

1, and take d1 to be of the
form d1 = c

√
log(p/α). Here, we tune the parameter c > 0 through Monte Carlo simulation,

as we now describe. We considered the parameter settings p ∈ {100, 500}, s ∈ {2, b√pc, p},
ϑ ∈ {2, 1, 1/2}, Σ = Ip, α = 0.05, β ∈ {2ϑ, ϑ, ϑ/2}, γ = 30000 and z = 500. Then, with θ
generated as ϑU , where U is uniformly distributed on the union of all s-sparse unit spheres
in Rp (independent of our data), we studied the coverage probabilities, estimated over 2000
repetitions as c varies, of the ocd CI confidence interval for data generated according to the
Gaussian model defined at the beginning of Section 3. Figure 1 displays a subset of the results
(the omitted curves were qualitatively similar). On this basis, we recommend c = 0.5 as a
safe choice across a wide range of data generating mechanisms, and we used this value of c
throughout our confidence interval simulations.

The previous two paragraphs, in combination with Algorithms 1 and 2, provide the prac-
tical implementation of the ocd CI algorithm that we use in our numerical studies and that
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Figure 1: Coverage probabilities of the ocd CI confidence interval as the parameter c, involved
in the choice of tuning parameter d1, varies.

we recommend for practitioners. The only quantity that remains for the practitioner to input
(other than the data) is β, which represents a lower bound on the Euclidean norm of the
vector of mean change. Fortunately, this description makes β easily interpretable by prac-
titioners. In cases where an informed default choice is not available, practitioners can make
a conservative (very small) choice and use an increased grid of scales to with only a small
inflation in the confidence interval length guarantee and computational cost; see Section 3.5.

4.2 Coverage Probability and Interval Length

In Table 1, we present the detection delay of the ocd procedure, as well as the coverage
probabilities and average confidence interval lengths of the ocd CI procedure, all estimated
over 2000 repetitions, with the same set of parameter choices and data generating mechanism
as in Section 4.1. From this table, we see that the coverage probabilities are at least at the
nominal level (up to Monte Carlo error) across all settings considered. Underspecification
of β means that the grid of scales that can be chosen for indices in Ŝ is shifted downwards,
and therefore increases the probability that b̃j will underestimate θj for j ∈ Ŝ. In turn, this
leads to a slight conservativeness for the coverage probability (and corresponding increased
average confidence interval length). On the other hand, overspecification of β yields a shorter
interval on average, though these were nevertheless able to retain the nominal coverage in all
cases considered.

Another interesting feature of Table 1 is to compare the average confidence interval lengths
with the corresponding average detection delays. Corollary 6(b), as well as Chen et al.
(2022, Theorem 4), indicates that both of these quantities are of order (s/β2) ∨ 1, up to
polylogarithmic factors in p and γ, but of course whenever the confidence interval includes

14



Table 1: Estimated coverage and average length of the ocd CI confidence interval and average
detection delay over 2000 repetitions, with standard errors in brackets. Other parameters:
γ = 30000, z = 1000, Σ = Ip, α = 0.05, a = ã =

√
2 log p, c = 0.5, d1 = c

√
log(p/α),

d2 = 4d2
1. For comparison, we also present the corresponding estimated coverage probabilities

and average lengths of the procedure based on Kaul et al. (2021), as described in Section 4.2.

ocd CI Kaul et al

p s ϑ β Delay Coverage (%) CI Length Coverage (%) CI Length
100 2 2 4 9.8(0.1) 96.2(0.4) 20.1(0.7) 83.2(0.8) 732.7(9.6)
100 2 2 2 12.6(0.1) 97.0(0.4) 33.7(0.7) 82.5(0.8) 474.9(11.0)
100 2 2 1 14.1(0.1) 97.9(0.3) 80.8(1.0) 83.5(0.8) 341.4(10.4)
100 2 1 2 34.2(0.3) 95.8(0.4) 66.1(1.0) 76.6(0.9) 399.3(10.5)
100 2 1 1 44.2(0.3) 97.5(0.4) 122.0(1.4) 80.5(0.9) 123.8(6.5)
100 2 1 0.5 52.0(0.4) 97.4(0.4) 309.1(2.0) 81.5(0.9) 90.8(5.4)
100 10 2 4 14.7(0.1) 96.0(0.4) 32.5(0.8) 80.2(0.9) 636.4(10.5)
100 10 2 2 15.7(0.1) 97.4(0.4) 38.4(0.8) 77.4(0.9) 537.9(10.9)
100 10 2 1 15.9(0.1) 97.0(0.4) 80.2(1.1) 80.8(0.9) 542.4(10.9)
100 10 1 2 52.6(0.5) 96.2(0.4) 114.0(1.5) 75.8(1) 342.4(10.1)
100 10 1 1 56.9(0.4) 97.1(0.4) 142.5(1.8) 73.9(1) 262.6(9.1)
100 10 1 0.5 60.2(0.4) 98.2(0.3) 301.1(1.6) 75.9(1) 248.3(8.9)
100 100 2 4 27.2(0.2) 96.1(0.4) 77.6(0.9) 68.2(1.0) 533.9(10.7)
100 100 2 2 27.7(0.2) 96.0(0.4) 81.8(1.0) 71.3(1.0) 537.7(10.8)
100 100 2 1 28.2(0.2) 97.5(0.3) 99.4(1.3) 71.8(1.0) 556.0(10.7)
100 100 1 2 100.7(0.8) 94.7(0.5) 292.8(3.5) 87.7(0.7) 850.5(9.5)
100 100 1 1 100.5(0.9) 96.3(0.4) 296.0(3.4) 88.0(0.7) 863.7(9.3)
100 100 1 0.5 103.2(0.8) 97.3(0.4) 365.9(2.8) 89.3(0.7) 876.8(9.1)
500 2 2 4 11.3(0.1) 97.2(0.4) 23.1(0.7) 92.0(0.6) 958.7(4.3)
500 2 2 2 15.8(0.1) 97.7(0.3) 45.2(0.9) 83.3(0.8) 806.4(8.7)
500 2 2 1 17.7(0.1) 97.5(0.4) 117.3(1.0) 79.9(0.9) 624.9(10.7)
500 2 1 2 41.5(0.3) 97.3(0.4) 81.8(1.2) 80.0(0.9) 774.9(9.4)
500 2 1 1 55.0(0.4) 96.8(0.4) 168.9(1.5) 73.0(1) 275.9(9.4)
500 2 1 0.5 64.6(0.5) 98.1(0.3) 445.0(1.7) 75.6(1) 186.1(8.0)
500 22 2 4 23.6(0.2) 96.3(0.4) 55.4(1.0) 87.0(0.8) 884.9(7.3)
500 22 2 2 25.0(0.2) 97.0(0.4) 60.3(0.8) 85.5(0.8) 864.2(7.8)
500 22 2 1 25.5(0.2) 98.1(0.3) 119.7(0.8) 83.6(0.8) 823.0(8.6)
500 22 1 2 88.1(0.7) 97.0(0.4) 203.5(2.1) 77.2(0.9) 645.0(11.0)
500 22 1 1 91.9(0.6) 97.8(0.3) 229.7(2.2) 76.2(1) 562.8(11.1)
500 22 1 0.5 94.9(0.6) 98.3(0.3) 462.8(1.4) 75.5(1) 538.3(11.2)
500 500 2 4 79.8(0.6) 95.0(0.5) 238.9(2.7) 88.5(0.7) 913.0(8.0)
500 500 2 2 80.3(0.6) 95.8(0.4) 245.7(2.6) 90.3(0.7) 928.8(7.7)
500 500 2 1 80.9(0.6) 97.5(0.4) 250.2(2.5) 90.6(0.7) 928.3(7.7)
500 500 1 2 290.5(2.3) 94.5(0.5) 819.7(7.9) 95.2(0.5) 1189.4(7.3)
500 500 1 1 291.4(2.3) 95.2(0.5) 831.1(7.5) 94.3(0.5) 1204.9(7.0)
500 500 1 0.5 297.3(2.3) 98.1(0.3) 875.0(6.7) 94.6(0.5) 1207.4(6.8)
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the changepoint, its length must be at least as long as the detection delay. Nevertheless, in
most settings, it is only 2 to 3 times longer on average, and in all cases considered was less
than 7 times longer on average. Moreover, we can also observe that the confidence interval
length increases with s and decreases with β, as anticipated by our theory.

For comparison, we also present the corresponding coverage probabilities and average
lengths of confidence intervals obtained using an offline procedure as described in the intro-
duction. More precisely, after the ocd algorithm has declared a change, we treat the data
up to the stopping time as an offline dataset, and apply the inspect algorithm (Wang and
Samworth, 2018), followed by the one-step refinement of Kaul et al. (2021), to construct
an estimate, ẑKFJS, of the changepoint location. As recommended by Kaul et al. (2021),
we obtain an estimator ϑ̂KFJS of ϑ using the `2-norm of the soft-thresholded difference in
empirical mean vectors before and after ẑKFJS, with the soft-thresholding parameter chosen
via the Bayesian Information Criterion. The final confidence interval is then of the form
[ẑKFJS− qα/2/(ϑ̂KFJS)2, ẑKFJS + qα/2/(ϑ̂KFJS)2], where qα/2 is the 1−α/2 quantile of the distribu-
tion of the (almost surely unique) maximizer of a two-sided Brownian motion with a triangular
drift as given by Kaul et al. (2021, Theorem 3.1). In particular, we have q0.025 = 11.03. The
last two columns of Table 1 reveal that both the coverage probabilities and confidence interval
lengths from this procedure are disappointing and not competitive with those of the ocd CI

algorithm. There are two main reasons for this: first, the nature of the online problem means
that the changepoint is often located near the right-hand end of the dataset up to the stopping
time; on the other hand, the theoretical guarantees of Kaul et al. (2021) are obtained under
an asymptotic setting where the fraction of data either side of the change is bounded away
from zero. Thus, the estimated changepoint from the one-step refinement is often quite poor.
Moreover, the estimated magnitude of change, ϑ̂KFJS, is often a significant underestimate of ϑ
due to the soft-thresholding operation, and this can lead to substantially inflated confidence
interval lengths. We emphasize that the Kaul et al. (2021) procedure was not designed for
use in this online setting, but we nevertheless present these results to illustrate the fact that
the naive application of offline methods in sequential problems may fail badly.

While Table 1 covers the most basic setting for our methodology, our theory in Section 3
applies equally well to data with spatial dependence across different coordinates. To assess
whether this theory carries over to empirical performance, Table 3 in the supplement (Sec-
tion 5.5) presents corresponding coverage probabilities and lengths for the ocd CI procedure
with the cross-sectional covariance matrix Σ = (Σjk)j,k∈[p] taken to be Toeplitz with param-
eter ρ ∈ {0.5, 0.75}; in other words, Σjk = ρ|j−k|. The results are again encouraging: the
coverage remains perfectly satisfactory in all settings considered, and moreover, the lengths
of the confidence intervals are very similar to those in Table 1.

4.3 Support Recovery

We now turn our attention to the empirical support recovery properties of the quantity Ŝ (in
combination with the anchor coordinate ĵ) computed in the ocd CI algorithm. In Table 2,

we present the probabilities, estimated over 500 repetitions, that Ŝ ⊆ Sβ and that Ŝ ∪ {ĵ} ⊇
S for p = 100, s ∈ {5, 50}, ϑ ∈ {1, 2}, Σ = Ip, and for three different signal shapes:
in the uniform, inverse square root and harmonic cases, we took θ ∝ (1{j∈[s]})j∈[p], θ ∝
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Table 2: Estimated support recovery probabilities (with standard errors in brackets). Other
parameters: p = 100, Σ = Ip, α = 0.05, a = ã =

√
2 log p, d1 =

√
2 log(p/α), β = ϑ, and with

an additional ` = d2s log2(2p) log(p)β−2e post-declaration observations.

s ϑ Signal Shape Ŝ ⊆ Sβ (%) Ŝ ∪ {ĵ} ⊇ S (%)
5 2 uniform 99.8(0.2) 97.6(0.7)
5 1 uniform 100.0(0.0) 97.6(0.7)
50 2 uniform 100.0(0.0) 95.6(0.9)
50 1 uniform 100.0(0.0) 97.8(0.7)

5 2 inv sqrt 99.6(0.3) 96.6(0.8)
5 1 inv sqrt 100.0(0.0) 98.8(0.5)
50 2 inv sqrt 100.0(0.0) 99.8(0.2)
50 1 inv sqrt 100.0(0.0) 100.0(0.0)

5 2 harmonic 100.0(0.0) 97.6(0.7)
5 1 harmonic 99.6(0.3) 97.8(0.7)
50 2 harmonic 100.0(0.0) 99.4(0.3)
50 1 harmonic 100.0(0.0) 100.0(0.0)

(j−1/2
1{j∈[s]})j∈[p] and θ ∝ (j−1

1{j∈[s]})j∈[p] respectively. As inputs to the algorithm, we set

a = ã =
√

2 log p, α = 0.05, d1 =
√

2 log(p/α), β = ϑ, and, motivated by Corollary 6,
took an additional ` = d2sβ−2 log2(2p) log pe post-declaration observations in constructing
the support estimates. The results reported in Table 2 provide empirical confirmation of the
support recovery properties claimed in Corollary 6.

Finally in this section, we consider the extent to which the additional ` observations are
necessary in practice to provide satisfactory support recovery. In the left panel of Figure 2, we
plot Receiver Operating Characteristic (ROC) curves to study the estimated support recovery
probabilities with ` = 0 as a function of the input parameter d1, which can be thought of as
controlling the trade-off between P(Ŝ ∪ {ĵ} ⊇ S) and P(Ŝ ⊆ Sβ). The fact that the triangles
in this plot are all to the left of the dotted vertical line confirms the theoretical guarantee
provided in Corollary 6(a), which holds with d1 =

√
2 log(p/α), and even with ` = 0); the

less conservative choice d1 =
√

2 log p, which roughly corresponds to an average of one noise
coordinate included in Ŝ, allows us to capture a larger proportion of the signal. From this
panel, we also see that additional sampling is needed to ensure that, with high probability,
we recover all of the true signals. This is unsurprising: for instance, with a uniform signal
shape and s = 50, it is very unlikely that all 50 signal coordinates will have accumulated such
similar levels of evidence to appear in Ŝ ∪ {ĵ} by the time of declaration. The right panel
confirms that, with an inverse square root signal shape, the probability that we capture each
signal increases with the signal magnitude, and that even small signals tend to be selected
with higher probability than noise coordinates.

4.4 US Covid-19 Data Example

In this section, we apply ocd CI to a dataset of weekly deaths in the United States be-
tween January 2017 and June 2020 (available at: https://www.cdc.gov/nchs/nvss/vsrr/
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Figure 2: Support recovery properties of ocd CI. In the left panel, we plot ROC curves for
three different signal shapes and for sparsity levels s ∈ {5, 50}. The triangles and circles
correspond to points on the curves with d1 =

√
2 log(p/α) (with α = 0.05), and d1 =

√
2 log p

respectively. The dotted vertical line corresponds to P(Ŝ ⊆ Sβ) = 1− α. In the right panel,

we plot the proportion of 500 repetitions for which each coordinate belongs to Ŝ ∪ {ĵ} with
d1 =

√
2 log p; here, the s = 20 signals have an inverse square root shape, and are plotted

in red; noise coordinates are plotted in black. Other parameters for both panels: p = 100,
Σ = Ip, β = ϑ = 2, ` = 0, a = ã =

√
2 log p.
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covid19/excess_deaths.htm). The data up to 29 June 2019 are treated as our training
data. An obvious discrepancy between underlying dynamics of these weekly deaths and the
conditions assumed in our theory in Section 3 is temporal dependence, particularly induced
by seasonal and weather effects. Although we can never hope to remove this dependence
entirely, we seek to mitigate its impact by pre-processing the data as follows: for each of the
50 states, as well as Washington, D.C. (p = 51), we first estimate the “seasonal death curve”,
i.e. the mean death numbers for each day of the year, for each state. The seasonal death curve
is estimated by first splitting the weekly death numbers evenly across the seven relevant days,
and then estimating the average number of deaths on each day of the year from these derived
daily death numbers using a Gaussian kernel with a bandwidth of 20 days. As the death
numbers follow an approximate Poisson distribution, we apply a square-root transformation
to stabilize the variance; more precisely, the transformed weekly excess deaths are computed
as the difference of the square roots of the weekly deaths and the predicted weekly deaths
from the seasonal death curve. Finally, we standardize the transformed weekly excess deaths
using the mean and standard deviation of the transformed data over the training period. The
standardized, transformed data are plotted in Figure 3 for 12 states.
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Figure 3: Standardized, transformed weekly excess death data from 12 states (including
Washington, D.C.). The monitoring period starts from 30 June 2019 (dashed line). The data
from the states in the support estimate are shown in red. The confidence interval [8 March
2020, 28 March 2020] is shown in the light blue shaded region.

When applying ocd CI to these data, we take a = ã =
√

2 log p, T diag = log{16pγ log2(4p)},
T off = 8 log{16pγ log2(2p)}, d1 = 0.5

√
log(p/α) and d2 = 4d2

1, with α = 0.05, β = 50 and
γ = 1000. On the monitoring data (from 30 June 2019), the ocd CI algorithm declares a
change on the week ending 28 March 2020, and provides a confidence interval from the week
ending 21 March 2020 to the week ending 28 March 2020. This coincides with the begin-
ning of the first wave of Covid-19 deaths in the United States. The algorithm also identifies
New York, New Jersey, Connecticut, Michigan and Louisiana as the estimated support of the
change. Interestingly, if we run the ocd CI procedure from the beginning of the training data
period (while still standardizing as before, due to the lack of available data prior to 2017),
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it identifies a subtler change on the week ending 6 January 2018, with a confidence interval
of [17 December 2017, 6 January 2018]. This corresponds to a bad influenza season at the
end of 2017 (see, https://www.cdc.gov/flu/about/season/flu-season-2017-2018.htm).
Despite the natural interpretation of these findings, we recognize that the model in Section 3
under which we proved our theoretical results cannot capture the full complexity of the tem-
poral dependence in this dataset even after our pre-processing transformations. A complete
theoretical analysis of the performance of ocd CI in time-dependent settings is challenging
and beyond the scope of the current work; in practical applications, we advise careful mod-
eling of this dependence to facilitate the construction of appropriate residuals for which the
main effects of this dependence have been removed.

5 Supplementary material

In this section, we provide proofs of our main results (Section 5.1), auxiliary results and their
proofs (Section 5.2), pseudocode for the ocd and ocd′ base procedures (Section 5.3), exten-
sions of our results to sub-Gaussian and sub-exponential settings (Section 5.4) and additional
simulation results (Section 5.5). Throughout this section, we use P instead of Pz,θ,Σ when it
is clear from the context.

5.1 Proofs of main results

Proof of Theorem 1. Fix r ≥ 1 that satisfies the assumption (3) in the theorem, n > z, j ∈ [p],
b ∈ B and j′ ∈ [p] \ {j}. We assume, without loss of generality, that θj

′ ≥ 0. The case θj
′
< 0

can be analyzed similarly. Recall that bmin, defined in Algorithm 1, is the smallest positive
scale in B ∪ B0, and write bj

′
aux := min

{
b ∈ (B ∪ B0) ∩ (0,∞) : b ≥ θj

′}
. Then we have

Aj
′,j
n,b +

∑n+`
i=n+1X

j′

i | t
j
n,b ∼ N

(
θj
′
min{n + ` − z, tjn,b + `}, tjn,b + `

)
. Thus, recalling the

definition of Ŝ and b̃j
′

from Algorithm 1, we have

P
(
{j′ ∈ Ŝ} ∩ {b̃j′ /∈ (0, θj

′
)} ∩ {N = n, ĵ = j, b̂ = b}

)
= E

{
P
(
{j′ ∈ Ŝ} ∩ {b̃j′ /∈ (−bmin, b

j′

aux)} ∩ {N = n, ĵ = j, b̂ = b}
∣∣∣ tjn,b)}

≤ E
{
P
(
Aj
′,j
n,b +

n+∑̀
i=n+1

Xj′

i ≥ bj
′

aux(tjn,b + `) + d1

(
tjn,b + `)1/2

∣∣∣∣ tjn,b)}

+ E
{
P
(
Aj
′,j
n,b +

n+∑̀
i=n+1

Xj′

i ≤ −bmin(tjn,b + `)− d1

(
tjn,b + `

)1/2

∣∣∣∣ tjn,b)}
≤ E

{
Φ̄
(
(bj
′

aux − θj
′
)(tjn,b + `)1/2 + d1

)}
+ E

{
Φ̄
(
(bmin + θj

′
)(tjn,b + `)1/2 + d1

)}
≤ 2Φ̄(d1). (7)

Moreover, by a similar argument to (28) in the proof of Proposition 8, for b ∈ (0, θj
′
), we have

P
(
n− tj

′

n,b − d2/b
2 > z

)
≤ 2Φ̄

(√
d2

b
(θj
′ − b/2)

)
≤ 2Φ̄

(√
d2/2

)
. (8)
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Combining (7) and (8), we have

P
(
{j′ ∈ Ŝ} ∩ {n− tj

′

n,b̃j′
− d2/(b̃

j′)2 > z} ∩ {N = n, ĵ = j, b̂ = b}
)

≤ P
(
{j′ ∈ Ŝ} ∩ {b̃j′ /∈ (0, θj

′
)} ∩ {N = n, ĵ = j, b̂ = b}

)
+

∑
b∈(B∪B0)∩(0,θj)

2Φ̄
(√

d2/2
)

≤ 2Φ̄(d1) + 2 log2(4p)Φ̄
(√

d2/2
)
≤ 2 log2(4p)e−5rβ2/(18s log2(2p)),

where the last inequality follows from the choice of d1 and d2 in the statement of the theorem
and the standard Gaussian tail bound used at the end of the proof of Lemma 9. By a union
bound and (3), we have

P(z /∈ C) ≤ P(N ≤ z) + P
(
N −min

j∈Ŝ

{
tj
N,b̃j

+
d2

(b̃j)2

}
> z

)
≤ P(N ≤ z) + P(N > z + r)

+

z+brc∑
n=z+1

p∑
j=1

∑
b∈B

p∑
j′=1

P
(
{j′ ∈ Ŝ} ∩

{
n− tj

′

n,b̃j
′ −

d2

(b̃j′)2
> z
}
∩ {N = n, ĵ = j, b̂ = b}

)
≤ P(N ≤ z) + g(r;N) + 4rp2 log2

2(4p)e−5rβ2/(18s log2(2p)) ≤ α,

as required.

Proof of Theorem 2. Fix r ≥ 1 that satisfies the assumption (3). Denote `0 := 80r. Then
` ≥ `0. Since the output of Algorithm 1 remains unchanged if we replace (Xj

t : t ∈ N) by
(−Xj

t : t ∈ N) for any fixed j, we may assume without loss of generality that θ1 ≥ θ2 ≥
ϑ/
√
s log2(2p). For j ∈ {1, 2}, we denote bj := max{b ∈ B ∪ B0 : b ≤ θj} . Since ϑ ≥ β and

s ≤ 2blog2(p)c, we have b1 ≥ b2 ≥ β/
√
s log2(2p) =: b∗. Denote

u :=
`0β

2

80s log2(2p)
= rb2

∗ and δ :=
a

2
√
r + `

.

Now define the following events:

Ω0 := {z < N ≤ z + r}
Ω1 :=

{
tjN,b ≤ N − z + ub−2 for all j ∈ [p] and b ∈ B ∪ B0

}
,

Ω2 :=

{∣∣∣∣Aj′,jN,b +
N+∑̀
i=N+1

Xj′

i

∣∣∣∣ < a
√
tjN,b + ` for all b ∈ B ∪ B0, j ∈ [p]

and all j′ ∈ [p] \ {j} with
∣∣θj′∣∣ ≤ δ

}
,

Ω3 :=
{
tĵ
N,b̂
≤ N − z + `/20

}
.

Finally, we denote event
Ω4 := Ω4,1 ∪ Ω4,2,
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with

Ω4,1 :=
{
ĵ 6= 1, 1 ∈ Ŝ, b̃1 ≥ b1/

√
2
}

Ω4,2 :=
{
ĵ = 1, 2 ∈ Ŝ, b̃2 ≥ b2/

√
2
}
.

We note that for j ∈ {1, 2}, on Ω4,j, we have b̃j ∈ B ∪ B0. Then, on the event
⋂4
k=0 Ωk, we

have

L = min
j∈Ŝ

{
tj
N,b̃j

+
d2

(b̃j)2

}
∧N ≤ N − z +

2(u+ d2)

(b2)2
≤ 3r +

2d2

b2
∗
≤ 8r.

Thus, it suffices to control the probability of ∪4
k=0Ωc

k. First, we note that

P(Ωc
0) ≤ g(r;N) + P(N ≤ z). (9)

On Ω0, we have for any j ∈ [p] and b ∈ B ∪ B0 that

tjN,b = sargmax
0≤h≤N

N∑
i=N−h+1

b(Xj
i − b/2) ≤ sargmax

N−z≤h≤N

N∑
i=N−h+1

b(Xj
i − b/2)

= N − z + sargmax
0≤h≤z

z∑
i=z−h+1

b(Xj
i − b/2).

Thus, by Lemma 9 (taking µ = −b/2) and a union bound, we have

P(Ω0 ∩ Ωc
1) ≤ 2p log2(4p)e−u/8 = 2p log2(4p)e−rb

2
∗/8. (10)

Now observe that, for all z < n ≤ z + r, b ∈ B ∪ B0, j ∈ [p] and j′ ∈ [p] \ {j}, we have

Aj
′,j
n,b +

n+∑̀
i=n+1

Xj′

i

∣∣∣∣ tjn.b ∼ N(θj′{`+ min
(
tjn,b, n− z

)}
, tjn,b + `

)
. (11)

Hence, when
∣∣θj′∣∣ ≤ δ, we have that

P
(∣∣∣∣Aj′,jn,b +

n+∑̀
i=n+1

Xj′

i

∣∣∣∣ ≥ a
√
tjn,b + `

∣∣∣∣ tjn.b) ≤ P(|Y1| ≥ a) ≤ 2P(Y1 ≥ a) ≤ e−a
2/8, (12)

where Y1 ∼ N (δ
√
n− z + `, 1), and where the last inequality follows from the relation a =

2δ
√
r + `. Thus, by a union bound, we have

P(Ω0 ∩ Ωc
2) ≤ 2rp2 log2(4p)e−a

2/8. (13)
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Recall that u = `0b
2
∗/80. We therefore have for any z < n ≤ z + r, j ∈ [p] and b ∈ B that

P
(
{N = n} ∩ Ω1 ∩ Ω2 ∩

{
Qj
n,b ≥ Qj

n,b∗

}
∩
{
tjn,b > n− z + `/20

} ∣∣∣ Xj
1 , X

j
2 , . . .

)
≤ P

( ⋃
j′∈[p]\{j}:
|θj′ |>δ

{
|Ej′,j

n,b | ≥ |E
j′,j
n,b∗
|
}
∩ {N = n} ∩ Ω1 ∩ Ω2 ∩

{
tjn,b > n− z + `/20

}∣∣∣∣∣Xj
1 , X

j
2 , . . .

)

≤
∑

j′∈[p]\{j}:
|θj′ |>δ

P
({
|Ej′,j

n,b | ≥ |E
j′,j
n,b∗
|
}
∩
{
n− z < tjn,b∗ ≤ n− z + `/80

}
∩
{
tjn,b > n− z + `/20

} ∣∣∣ Xj
1 , X

j
2 , . . .

)
+

∑
j′∈[p]\{j}:
|θj′ |>δ

P
({
|Ej′,j

n,b | ≥ |E
j′,j
n,b∗
|
}
∩
{
tjn,b∗ ≤ n− z

}
∩
{
tjn,b > n− z + `/20

} ∣∣∣ Xj
1 , X

j
2 , . . .

)

≤ p exp

(
− `δ

2

960

)
= p exp

(
− `a2

3840(r + `)

)
, (14)

where the final inequality follows from Lemma 11(a), applied with U =
∑z

i=n−tjn,b∗+1X
j′

i ,

V =
∑n−tjn,b∗

i=n−tjn,b+1
Xj′

i , Y =
∑n+`

i=z+1X
j′

i , α = θj
′
, φ1 = z−n+tjn,b∗ , φ2 = z−n+tjn,b, φ3 = n−z+`

and κ = `/80, as well as Lemma 11(b), with U =
∑z

i=n−tjn,b+1X
j′

i , Y =
∑n+`

i=n−tjn,b∗+1
Xj′

i ,

Z =
∑n−tjn,b∗

i=z+1 Xj′

i , α = θj
′
, φ1 = z − n + tjn,b, φ3 = ` + tjn,b∗ , φ4 = n− z − tjn,b∗ and κ = `/80.

Observe that Qĵ

n,b̂
≥ Qĵ

n,b∗
. Thus, by a union bound, we have

P(Ω0 ∩ Ω1 ∩ Ω2 ∩ Ωc
3)

≤
p∑
j=1

∑
b∈B

z+brc∑
n=z+1

P
(
{N = n} ∩ Ω1 ∩ Ω2 ∩

{
Qj
n,b ≥ Qj

n,b∗

}
∩
{
tjn,b > n− z + `/20

})
≤ 2rp2 log2(2p) exp

(
− `a2

3840(r + `)

)
≤ 2rp2 log2(2p)e−a

2/3888, (15)

where the last inequality follows from r = `0/80 ≤ `/80. Recall that d2
1 = 5rb2

∗/9 ≤ (b1)2`/144.
Thus, on Ω0 ∩ Ω3, we have

tĵ
N,b̂
≤ N − z + `/20 ≤ r + `/20 ≤ `/16.

Hence, for any z < n ≤ z + r, j ∈ [p] \ {1} and b ∈ B, we have

P
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b} ∩ Ωc

4,1

∣∣ Xj
1 , X

j
2 , . . .

)
≤ P

(
{tjn,b ≤ `/16} ∩

{
E1,j
n,b − b

1
√(

tjn,b + `
)
/2 < d1

} ∣∣∣∣ Xj
1 , X

j
2 , . . .

)
≤ 1

2
e−d

2
1/2. (16)
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Here, in the final bound, we have used the facts that E1,j
n,b | t

j
n,b ∼ N

(
θ1 min{(n+ `− z)(tjn,b +

`)−1/2, (tjn,b + `)1/2}, 1
)

and that

θ1 min
{

(n+ `− z)(tjn,b + `)−1/2, (tjn,b + `)1/2
}
− b1

√(
tjn,b + `

)
/2

≥ 4θ1
√
`√

17
− b1
√

17`

4
√

2
≥ b1
√
`

6
≥ 2d1,

when tjn,b ≤ `/16, as well as the standard Gaussian tail bound used at the end of the proof of
Lemma 9. By a similar argument, we also have for any z < n ≤ z + r and b ∈ B that

P
(
Ω3 ∩ {N = n, ĵ = 1, b̂ = b} ∩ Ωc

4,2

∣∣ X1
1 , X

1
2 , . . .

)
≤ P

(
{t1n,b ≤ `/16} ∩

{
E2,1
n,b − b

2
√(

t1n,b + `
)
/2 < d1

} ∣∣∣ X1
1 , X

1
2 , . . .

)
≤ 1

2
e−d

2
1/2. (17)

Thus, by a union bound, we have

P(Ω0 ∩ Ω3 ∩ Ωc
4) = P(Ω0 ∩ Ω3 ∩ Ωc

4,1 ∩ Ωc
4,2)

≤
p∑
j=2

∑
b∈B

z+brc∑
n=z+1

P
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b} ∩ Ωc

4,1

)
+
∑
b∈B

z+brc∑
n=z+1

P
(
Ω3 ∩ {N = n, ĵ = 1, b̂ = b} ∩ Ωc

4,2

)
≤ rp log2(2p)e−5rb2∗/18. (18)

Hence combining (9), (10), (13), (15) and (18), we conclude that

P(L > 8r) ≤ g(r;N) + P(N ≤ z) + 4rp2 log2(4p)e−a
2/3888 + 3rp log2(4p)e−rb

2
∗/8 ≤ α,

where the last inequality follows from the choice of a with a sufficiently large universal constant
C and (3).

Proof of Theorem 3. Fix r ≥ 1 that satisfies the assumption (3).
(a) For j′ ∈ Sc

β, we have |θj′| < bmin, so the event {|b̃j′| ≤ |θj′|} is empty. Thus by (7), we
have, for n > z, j ∈ [p], b ∈ B and j′ ∈ Sc

β, that

P
(
{j′ ∈ Ŝ} ∩ {N = n, ĵ = j, b̂ = b}

)
≤ 2Φ̄(d1).

Hence, by a union bound, we have

P(Ŝ *Sβ) ≤ P(N ≤ z) + P(N > z + r)

+

z+brc∑
n=z+1

p∑
j=1

∑
b∈B

∑
j′∈Sc

β

P
(
{j′ ∈ Ŝ} ∩ {N = n, ĵ = j, b̂ = b}

)
≤ P(N ≤ z) + g(r;N) + 4rp2 log2(2p)Φ̄(d1) ≤ α,
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as required.

(b) We use the events Ω0,Ω1,Ω2,Ω3 defined in the proof of Theorem 2. Recall from the

argument immediately below (15) that we have tĵ
N,b̂
≤ `/16 and d1 ≤ minj′∈S |θj

′ |
√
`/12 on

Ω0 ∩ Ω3. Recall also the definition of Ej′,j
n,b from Algorithm 1. Then, for any z < n ≤ z + r,

j ∈ [p], j′ ∈ S \ {j} and b ∈ B, we have

P
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b, j′ /∈ Ŝ}

∣∣ Xj
1 , X

j
2 , . . .

)
= P

(
Ω3 ∩ {N = n, ĵ = j, b̂ = b} ∩

{
|Ej′,j

n,b | < bmin

√
tjn,b + `+ d1

}
| Xj

1 , X
j
2 , . . .

)
≤ P

(
{tjn,b ≤ `/16} ∩

{
|Ej′,j

n,b | − bmin

√
tjn,b + ` < d1

} ∣∣∣∣ Xj
1 , X

j
2 , . . .

)
≤ 1

2
e−d

2
1/2, (19)

where, in the final bound, we have used the facts that Ej′,j
n,b | t

j
n,b ∼ N

(
θj
′
min{(n+`−z)(tjn,b+

`)−1/2, (tjn,b + `)1/2}, 1
)

and that

|θj′ |min
{

(n+ `− z)(tjn,b + `)−1/2, (tjn,b + `)1/2
}
− bmin

√
tjn,b + `

≥ 4|θj′|
√
`√

17
− bmin

√
17`

4
√

2
≥ |θ

j′ |
√
`

6
≥ 2d1,

when tjn,b ≤ `/16. Hence

P(Ŝ ∪ {ĵ} + S)

≤ P(Ωc
0) + P(Ω0 ∩ Ωc

1) + P(Ω0 ∩ Ωc
2) + P(Ω0 ∩ Ω1 ∩ Ω2 ∩ Ωc

3)

+

z+brc∑
n=z+1

p∑
j=1

∑
b∈B

∑
j′∈S\{j}

P
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b, j′ /∈ Ŝ}

)
≤ g(r;N) + P(N ≤ z) + 4rp2 log2(4p)e−a

2/3888 + 3rp2 log2(4p)e−rβ
2/(8s log2(2p)) ≤ α,

where the penultimate inequality follows from (9), (10), (13), (15) and (19), and the last
inequality follows from the choice of a with a sufficiently large universal constant C and (3).

Proof of Proposition 4. Fix N ∈ Tr,m and ψ ∈ JN . We denote by P(n0)
z,θ the restriction of Pz,θ

to the filtration Fn0 := σ(X1, . . . , Xn0). Denote

Θ̃ :=
{
θ ∈ Rp : θj ∈ {0, 1/(8

√
r)}, |supp(θ)| = m

}
,

and let Θ̃pa ⊆ Θ̃ be an (m/4)-packing set with respect to the symmetric difference metric
defined above, i.e. for any θ, θ̃ ∈ Θ̃pa, we have d

(
supp(θ), supp(θ̃)

)
> m/4. We also have

KL
(
P(z+r)
z,θ , P

(z+r)

z,θ̃

)
= r‖θ − θ̃‖2

2/2 ≤ m/64.
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Enumerate Θ̃pa =
{
θ(1), θ(2), . . . , θ(|Θ̃pa|)

}
. Let φ∗ := sargmink∈[|Θ̃pa|] d

(
ψ, supp(θ(k))

)
. Note

that φ∗ is also FN -measurable. Then for any z ∈ N0,

sup
θ∈Θr,m

Ez,θd
(
ψ, supp(θ)

)
≥ m

8|Θ̃pa|

|Θ̃pa|∑
k=1

Pz,θ(k)

(
d
(
ψ, supp(θ(k))

)
>
m

8

)

≥ m

8|Θ̃pa|

|Θ̃pa|∑
k=1

Pz,θ(k)
(φ∗ 6= k)

=
m

8

{
1− 1

|Θ̃pa|

|Θ̃pa|∑
k=1

Pz,θ(k)
(φ∗ = k)

}

≥ m

8

{
3

4
− 1

|Θ̃pa|

|Θ̃pa|∑
k=1

Pz,θ(k)
(φ∗ = k,N ≤ z + r)

}

=
m

8

{
3

4
− 1

|Θ̃pa|

|Θ̃pa|∑
k=1

P(z+r)
z,θ(k)

(φ∗ = k,N ≤ z + r)

}
. (20)

Now set

φ̃∗ :=

{
φ∗ if N ≤ z + r
1 if N > z + r.

Then φ̃∗ is Fz+r-measurable and by Fano’s inequality (Yu, 1997, Lemma 3), we have

1

|Θ̃pa|

|Θ̃pa|∑
k=1

P(z+r)
z,θ(k)

(φ∗ = k,N ≤ z + r) ≤ 1

|Θ̃pa|

|Θ̃pa|∑
k=1

P(z+r)
z,θ(k)

(φ̃∗ = k)

≤
log 2 + |Θ̃pa|−2

∑|Θ̃pa|
j,k=1 KL

(
P(z+r)
z,θ(j)

, P
(z+r)
z,θ(k)

)
log |Θ̃pa|

≤ log 2 +m/64

log |Θ̃pa|
. (21)

By Massart (2007, Lemma 4.7), there exists an (m/4)-packing set with

log |Θ̃pa| ≥ m/8. (22)

Combining (20), (21) and (22), we conclude that

sup
z∈N0,θ∈Θr,m

Ez,θ d
(
ψ, supp(θ)

)
≥ m

8

(
3

4
− log 2 +m/64

m/8

)
≥ m

8

(
3

4
− 8 log 2

m
− 1

8

)
≥ m

32
,

where we have used the assumption that m ≥ 15 in the final inequality.
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Proof of Proposition 5. Following the proof of Chen et al. (2022, Theorem 1(b)) up to, but
not including, (16), we have for every j ∈ [p], b ∈ B ∪ B0 that

P
(

max
1≤n≤z

(bAj,jn,b − b
2tjn,b/2) ≥ T diag

)
≤ 1−

(
1− e−Tdiag)z ≤ ze−T

diag

. (23)

It follows by a union bound that

P
(

max
1≤n≤z

Sdiag
n ≥ T diag

)
= P

(
max

1≤n≤z
max
j∈[p]

max
b∈B∪B0

(bAj,jn,b − b
2tjn,b/2) ≥ T diag

)
≤ zp|B ∪ B0|e−T

diag ≤ α

4
. (24)

Next, for every j ∈ [p], j′ ∈ [p] \ {j}, b ∈ B and n ∈ [z], we have Λj′,j
n,b | τ∼N (0, τ jn,b), so

(Ξj′,j
n,b )2 | τ jn,b ≤st χ

2
1. Thus, by another union bound, we have

P
(

max
n∈[z]

Soff
n ≥ T off

)
= P

(
max
n∈[z]

max
j∈[p]

max
b∈B

∑
j′∈[p]\{j}

(Ξj′,j
n,b )2

1{|Ξj
′,j
n,b |≥ã}

≥ T off

)
≤ P

(
max
n∈[z]

max
j∈[p]

max
b∈B

max
j′∈[p]\{j}

|Ξj′,j
n,b | ≥ ã

)
≤ zp2|B|e−ã2/2 ≤ α

4
. (25)

From (24) and (25), we deduce that

P(N ≤ z) ≤ α/2. (26)

On the other hand, for a sufficiently large universal constant C ′ > 0, we have

r1 =
C ′s log2(2p) log{pγα−1(β−2 ∨ 1)}

β2
+ 2

≥
{24T off log2(2p)

ϑ2
∨ 12ã2s log2(2p)

ϑ2
∨ 24T diags log2(2p)

β2

}
+ 2.

Thus, by Proposition 10 and by increasing the value of C if necessary, we have for every
r ≥ r1 that

g(r;N) + 4rp2 log2
2(4p)e−rβ

2/(8s log2(2p)) ≤ 5rp2 log2
2(4p) exp

{
− rβ2

48s log2(2p)

}
≤ 240sp2 log3

2(4p)

β2

rβ2

48s log2(2p)
exp

{
− rβ2

48s log2(2p)

}
≤ 240sp2 log3

2(4p)

β2
exp

{
− rβ2

96s log2(2p)

}
≤ α

4
, (27)

where the penultimate inequality follows from the fact that xe−x ≤ e−x/2 for x ≥ 0. The
desired result follows by combining (26) and (27).
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5.2 Auxiliary results

Proposition 8. Let X1, X2, . . . be independent random variables with X1, . . . , Xz
iid∼ N (0, 1)

and Xz+1, Xz+2, . . .
iid∼ N (θ, 1). Assume that 0 < b ≤ θ and let tn,b be defined as in (1) for

n ∈ N. Then for any α ∈ (0, 1), and any stopping time N satisfying P(N < z) ≤ α/2, we
have that the confidence interval

C0 :=

[
N − tN,b −

4{Φ−1(1− α/4)}2

b2
, N

]
satisfies P(z ∈ C0) ≥ 1− α.

Remark. We could also replace 4{Φ−1(1 − α/4)}2/b2 by 8 log(2/α)/b2 in the confidence in-
terval construction, if we apply the final bound from Lemma 9 in (28) of the proof below.

Proof. For n ∈ N, define Rn,b := max{Rn−1,b + b(Xn − b/2), 0}, with R0,b = 0. By Chen
et al. (2022, Lemma 2 in the supplement), we have tN,b = min{i : 0 ≤ i ≤ N,RN−i,b = 0} =

sargmax0≤h≤N
∑N

i=N−h+1 b(Xi− b/2). Let Un,b :=
∑z+n

i=z+1(Xi− b/2) for n ∈ N, with U0,b := 0.
Then Rn+z,b ≥ bUn,b for all n ∈ N. Hence, for y ∈ [0,∞), we have

P(N − tN,b − y ≥ z) ≤ P
(

inf
n∈N0:n≥z+y

Rn,b = 0

)
≤ P

(
inf

n∈N0:n≥y
Un,b ≤ 0

)
≤ 2Φ̄

(√
y(θ − b/2)

)
,

(28)
where the last inequality follows from Lemma 9. Thus, if we choose y = 4{Φ−1(1−α/4)}2/b2,
then we are guaranteed that P(N − tN,b−y > z) ≤ α/2. Combining this with the assumption
that P(N < z) ≤ α/2, the desired result follows.

Lemma 9. Let Y1, Y2, . . .
iid∼ N (µ, 1). Define Un :=

∑n
i=1 Yi for n ∈ N0, and let ξ :=

sargminn∈N0
µUn. Then, for y ∈ [0,∞), we have

P(ξ ≥ y) ≤ P
(

inf
n∈N0:n≥y

µUn ≤ 0
)
≤ 2Φ̄

(√
y|µ|

)
≤ e−yµ

2/2.

Proof. The first inequality holds since µUξ ≤ µU0 = 0. For the second and third inequalities,
we may assume without loss of generality that µ > 0, since the result is clear when µ = 0,
and if µ < 0 then the result will follow from the corresponding result with µ > 0 by setting
Y ′i := −Yi for i ∈ N. Note that (Un − nµ)n∈N0 is a standard Gaussian random walk starting
at 0. Let (Bt)t∈[0,∞) denote a standard Brownian motion starting at 0. Then, we have for any
y ∈ N0 and u > 0 that

P
(

inf
n∈N0:n≥y

Un ≤ 0

∣∣∣∣ Uy = u

)
≤ P

{
inf

t∈[y,∞)
(Bt + tµ) ≤ 0

∣∣∣∣ By = u

}
≤ e−2uµ, (29)

where the final inequality follows from Siegmund (1986, Proposition 2.4 and Equation (2.5)).
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Thus, for y ∈ [0,∞), we have

P
(

inf
n∈N0:n≥y

Un ≤ 0

)
= P

(
Udye ≤ 0

)
+ E

{
P
(

inf
n∈N0:n≥dye

Un ≤ 0

∣∣∣∣ Udye)1{Udye>0}

}
≤ Φ̄

(√
dyeµ

)
+

∫ ∞
0

1√
2πdye

e−
(u−dyeµ)2

2dye e−2uµ du

= 2Φ̄
(√
dyeµ

)
≤ 2Φ̄

(√
yµ
)
≤ e−yµ

2/2,

where the first inequality follows from (29) and the fact that Udye ∼ N (dyeµ, dye) and the

last inequality follows from the standard normal distribution tail bound Φ̄(x) ≤ e−x
2/2/2 for

x ≥ 0.

In Proposition 10, we assume the Gaussian data generating mechanism given at the be-
ginning of Section 3, and show that for the ocd′ base procedure, the quantity g(r;N) from (2)
has essentially the same form as the final term in (3).

Proposition 10. Assume that θ has an effective sparsity of s := s(θ) ≥ 2. Then, the output
N from ocd′, with inputs (Xt)t∈N, 0 < β ≤ ϑ, ã > 0, T diag > 0 and T off > 0, satisfies

Pz,θ,Σ
(
N > z + r

)
≤ p exp

{
− β2(r − 1)

24s log2(2p)

}
,

for all r ≥
{

24T off log2(2p)
ϑ2 ∨ 12ã2s log2(2p)

ϑ2 ∨ 24Tdiags log2(2p)
β2

}
+ 2.

Proof. For θ ∈ Rp with effective sparsity s(θ), there is at most one coordinate in θ of mag-
nitude larger than ϑ/

√
2, so there exists b∗ ∈

{
β/
√
s(θ) log2(2p),−β/

√
s(θ) log2(2p)

}
⊆ B

such that
J :=

{
j ∈ [p] : θj/b∗ ≥ 1 and |θj| ≤ ϑ/

√
2
}

has cardinality at least s(θ)/2. Note that the condition θj/b∗ ≥ 1 above ensures that {θj :
j ∈ J } all have the same sign as b∗. By Chen et al. (2022, Proposition 8), we have on the
event {N > z} that

q(X1, . . . , Xz, θ) := max
{
tjz,b∗ : j ∈ J

}
≤ 8T diags log2(2p)

β2
. (30)

We now fix

r ≥
{

24T off log2(2p)

ϑ2
∨ 12ã2s log2(2p)

ϑ2
∨ 24T diags log2(2p)

β2

}
+ 2 =: r0. (31)

For j ∈ J , define the event
Ωj
r :=

{
tjz+brc,b∗ > 2brc/3

}
.
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By applying Chen et al. (2022, Lemma 2) to tjz+brc,b∗ , we have for j ∈ J that

tjz+brc,b∗ = sargmax
0≤h≤z+brc

z+brc∑
i=z+brc−h+1

b∗(X
j
i − b∗/2) ≥ sargmax

0≤h≤brc

z+brc∑
i=z+brc−h+1

b∗(X
j
i − b∗/2)

= sargmax
0≤h≤brc

z+brc−h∑
i=z+1

−b∗(Xj
i − b∗/2) = brc − largmax

0≤h≤brc

z+h∑
i=z+1

−b∗(Xj
i − b∗/2).

Recall that Xj
z+1, X

j
z+2, . . .

iid∼ N (θj, 1). Hence, by applying Lemma 9 with µ = |b∗|/2 and
y = brc/3, we have for each j ∈ J that

P
{

(Ωj
r)

c
}

= P
(
tjz+brc,b∗ ≤

2brc
3

)
≤ P

(
largmax
0≤h≤brc

z+h∑
i=z+1

−b∗(Xj
i − b∗/2) ≥ brc

3

)

≤ P
(

sup
h≥brc/3

z+h∑
i=z+1

−sgn(b∗)(X
j
i − b∗/2) ≥ 0

)
≤ exp

(
−b2
∗brc/24

)
. (32)

We now work on the event Ωj
r, for some fixed j ∈ J . We note that (31) guarantees that

r ≥ 2, and thus tjz+brc,b∗ ≥
⌈
2brc/3

⌉
≥ 2. Then, by (30) and (31), we have r0 > 3tjz,b∗ , and

hence by Chen et al. (2022, Lemma 9),

brc
3

<
tjz+brc,b∗

2
≤ τ jz+brc,b∗ ≤

3tjz+brc,b∗
4

≤
3
(
tjz,b∗ + r

)
4

< r.

We conclude that
2/3 ≤ brc/3 < τ jz+brc,b∗ ≤ brc. (33)

Recall that Λ·,j
z+brc,b∗ ∈ Rp records the tail CUSUM statistics with tail length τ jz+brc,b∗ . We

observe by (33) that only post-change observations are included in Λ·,j
z+brc,b∗ . Hence we have

that
Λj′,j
z+brc,b∗

∣∣ τ jz+brc,b∗ ind∼ N
(
θj
′
τ jz+brc,b∗ , τ

j
z+brc,b∗

)
(34)

for j′ ∈ [p] \ {j}. By the definition of the effective sparsity of θ, the set

Lj :=

{
j′ ∈ [p] \ [j] : |θj′ | ≥ ϑ√

s log2(2p)

}
has cardinality at least s− 1. Hence, by (33), for all j′ ∈ Lj,

|θj′|
√
τ jz+brc,b∗ >

√
ϑ2brc

3s log2(2p)
=: ãr.
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We then observe, from (31), that
ãr > 2ã. (35)

Hence, from (34), we have for all j′ ∈ Lj that

P
(

Ωj
r ∩
{
|Λj′,j

z+brc,b∗ | <
1

2
ãr

√
τ jz+brc,b∗

} ∣∣∣∣ τ jz+brc,b∗) ≤ 1

2
e−ã

2
r/8. (36)

We denote

U j :=
⋂
j′∈Lj

{
|Λj′,j

z+brc,b∗| ≥
1

2
ãr

√
τ jz+brc,b∗

}
.

Thus, by a union bound, we have

P
(
Ωj
r ∩ (U j)c

)
≤ p

2
e−ã

2
r/8. (37)

Moreover, on the event Ωj
r ∩ U j, we have

∑
j′∈[p]:j′ 6=j

(
Λj′,j
z+brc,b∗

)2

τ jz+brc,b∗ ∨ 1
1{
|Λj
′,j
z+brc,b∗

|≥ã
√
τ j
z+brc,b∗

} ≥ ∑
j′∈Lj

(
Λj′,j
z+brc,b∗

)2

τ jz+brc,b∗

≥ ã2
r

4
|Lj| ≥ ϑ2brc

24 log2(2p)
≥ T off , (38)

where the penultimate inequality uses the fact that |Lj| ≥ s−1 and the last inequality follows
from (31). We now denote

Ẽj
r :=

{ ∑
j′∈[p]:j′ 6=j

(
Λj′,j
z+brc,b∗

)2

τ jz+brc,b∗ ∨ 1
1{
|Λj
′,j
z+brc,b∗

|≥ã
√
τ j
z+brc,b∗

} < T off

}
.

By (38), we have Ωj
r ∩ Ẽj

r ⊆ Ωj
r ∩ (U j)c. Thus, by (32) and (37) we have that

P
(
N > z + r

)
≤ P

(
N > z + brc

)
≤ P

(⋂
j∈J

Ẽj
r

)
≤ min

j∈J
P(Ẽj

r)

≤ min
j∈J

{
P
(
(U j)c ∩ Ωj

r

)
+ P

(
(Ωj

r)
c
)}

≤ p

2
exp

{
− ϑ2(r − 1)

24s log2(2p)

}
+ exp

{
− β2(r − 1)

24s log2(2p)

}
≤ p exp

{
− β2(r − 1)

24s log2(2p)

}
.

as desired.

Lemma 11. Let U ∼ N (0, φ1), V ∼ N (0, φ2 − φ1), Y ∼ N (αφ3, φ3) and Z ∼ N (αφ4, φ4) be
independent random variables.
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(a) Assume that min{φ2, φ3}/4 ≥ κ ≥ φ1 ≥ 0 for some κ > 0. Then

P
(
|U + V + Y |√

φ2 + φ3

≥ |U + Y |√
φ1 + φ3

)
≤ exp

(
−κα

2

6

)
.

(b) Assume that min{φ1, φ3}/4 ≥ κ ≥ φ4 ≥ 0 for some κ > 0. Then

P
(
|U + Y + Z|√
φ1 + φ3 + φ4

≥ |Y |√
φ3

)
≤ exp

(
−κα

2

12

)
.

Proof. The case α = 0 is trivial in both cases, so without loss of generality, we may assume
α > 0 throughout the rest of the proof.
(a) Let

W1 :=
(√

φ2 + φ3 −
√
φ1 + φ3

)
(U + Y )−

√
φ1 + φ3 V,

so that

W1 ∼ N
(
αφ3

(√
φ2 + φ3 −

√
φ1 + φ3

)
,
{(√

φ2 + φ3 −
√
φ1 + φ3

)2
+ φ2 − φ1

}
(φ1 + φ3)

)
.

Hence, by the standard Gaussian tail bound used at the end of the proof of Lemma 9, we
have

P(W1 ≤ 0) ≤ 1

2
e−α

2/(2w1), (39)

where w1 := φ1+φ3

φ2
3

(
1 + φ2−φ1

(
√
φ2+φ3−

√
φ1+φ3)2

)
. Then

w1 =
φ1 + φ3

φ2
3

(
1 +

(√
φ2 + φ3 +

√
φ1 + φ3

)2

φ2 − φ1

)

≤ 5

16κ

(
1 +

(√
8κ+

√
5κ
)2

3κ

)
≤ 3

κ
, (40)

where the first inequality holds because w1 is increasing in φ1 and decreasing in both φ2 and
φ3. Hence, using the fact that −(U + V + Y ) ≤st U + V + Y , as well as (39) and (40), we
have

P
(
|U + V + Y |√

φ2 + φ3

≥ |U + Y |√
φ1 + φ3

)
≤ P

({
U + Y√
φ1 + φ3

≤ U + V + Y√
φ2 + φ3

}
∩ {U + V + Y ≥ 0}

)
+ P

({
U + Y√
φ1 + φ3

≤ −U + V + Y√
φ2 + φ3

}
∩ {U + V + Y < 0}

)
≤ 2P

(
U + Y√
φ1 + φ3

≤ U + V + Y√
φ2 + φ3

)
= 2P(W1 ≤ 0) ≤ exp

(
−κα

2

6

)
,
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as required.

(b) Let

W2 :=
(√

φ1 + φ3 + φ4 −
√
φ3

)
Y −

√
φ3(U + Z),

so that

W2 ∼ N
(
αφ3

√
φ1+φ3+φ4 − α(φ3 + φ4)

√
φ3,
{(√

φ1+φ3+φ4 −
√
φ3

)2
+ φ1 + φ4

}
φ3

)
.

Note that the assumption guarantees that E(W2) > 0. Hence, by the standard Gaussian tail
bound used at the end of the proof of Lemma 9, we have

P(W2 ≤ 0) ≤ 1

2
e−α

2/(2w2), (41)

where

w2 :=
(
√
φ1 + φ3 + φ4 −

√
φ3)2 + φ1 + φ4(√

φ3(φ1 + φ3 + φ4)− φ3 − φ4

)2 .

Calculating the partial derivatives of w2 with respect to φ1, φ3 and φ4 and simplifying the
expressions, we have

∂w2

∂φ1

=
(φ3 + φ4)

√
φ3 − (φ3 + 2φ4)

√
φ1 + φ3 + φ4√

φ1 + φ3 + φ4

(√
φ3(φ1 + φ3 + φ4)− φ3 − φ4

)3 ≤ 0,

∂w2

∂φ3

=
−
(√

φ1 + φ3 + φ4 −
√
φ3

)2[
3φ1 + φ4 +

(√
φ1 + φ3 + φ4 −

√
φ3

)2]
2
√
φ3(φ1 + φ3 + φ4)

(√
φ3(φ1 + φ3 + φ4)− φ3 − φ4

)3 ≤ 0,

∂w2

∂φ4

=
2φ1

(
2
√
φ1 + φ3 + φ4 −

√
φ3

)2
+ 3(φ3 + φ4)

(√
φ1 + φ3 + φ4 −

√
φ3

)2

2(φ1 + φ3 + φ4)
(√

φ3(φ1 + φ3 + φ4)− φ3 − φ4

)3

+
(φ1 + φ4)(φ3 + φ4)

2(φ1 + φ3 + φ4)
(√

φ3(φ1 + φ3 + φ4)− φ3 − φ4

)3 ≥ 0.

Thus w2 is increasing in φ4 and decreasing in both φ1 and φ3 and hence

w2 ≤
6

κ
. (42)

Hence, using the fact that −(U + Y + Z) ≤st U + Y + Z, as well as (41) and (42), we have

P
(
|U + Y + Z|√
φ1 + φ3 + φ4

≥ |Y |√
φ3

)
≤ P

({
Y√
φ3

≤ U + Y + Z√
φ1 + φ3 + φ4

}
∩ {U + Y + Z ≥ 0}

)
+ P

({
Y√
φ3

≤ − U + Y + Z√
φ1 + φ3 + φ4

}
∩ {U + Y + Z < 0}

)
≤ 2P

(
Y√
φ3

≤ U + Y + Z√
φ1 + φ3 + φ4

)
= 2P(W2 ≤ 0) ≤ exp

(
−κα

2

12

)
,

as required.
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5.3 The ocd and ocd′ base procedures

Algorithms 2 and 3, which are taken from Chen et al. (2022), provide two options for a base
online changepoint detection procedure. The ocd algorithm is recommended for practical
use, while its variant, the ocd′ algorithm, satisfies the key condition (3) that underpins our
theoretical results in Section 3.

In order to help make the paper self-contained, and to aid interpretability, we remark
that the input parameter ã represents a thresholding level employed in the definition of the
quantity Qj

b in Algorithm 2 and Q̃j
b in Algorithm 3 that is designed to ensure that we only

aggregate over signal coordinates. The input parameters T diag and T off represent critical
values for the diagonal and off-diagonal statistics Sdiag and Soff respectively, both defined
in these algorithms. In other words, we declare a change as soon as either Sdiag ≥ T diag or
Soff ≥ T off .

Algorithm 2: Pseudo-code of the ocd algorithm

Input: X1, X2, . . . ∈ Rp observed sequentially, β > 0, ã ≥ 0, T diag > 0 and T off > 0
Set: bmin = β√

2blog2(2p)c log2(2p)
, B0 = {±bmin},

B =
{
±2m/2bmin : m = 1, . . . , blog2(2p)c

}
, n = 0, Ab = 0 ∈ Rp×p and tb = 0 ∈ Rp

for all b ∈ B ∪ B0

repeat
n← n+ 1
observe new data vector Xn

for (j, b) ∈ [p]× (B ∪ B0) do

tjb ← tjb + 1
A·,j
b ← A·,j

b +Xn

if bAj,jb − b2tjb/2 ≤ 0 then

tjb ← 0 and A·,j
b ← 0

compute Qj
b ←

∑
j′∈[p]:j′ 6=j

(Aj
′,j
b )2

tjb∨1
1{
|Aj
′,j
b |≥ã

√
tjb

}
Sdiag ← max(j,b)∈[p]×(B∪B0)

(
bAj,jb − b2tjb/2

)
Soff ← max(j,b)∈[p]×BQ

j
b

until Sdiag ≥ T diag or Soff ≥ T off ;
Output: N = n

5.4 Results under sub-Gaussian and sub-exponential assumptions

This section provides justification for the claimed theoretical results in Section 3.4. We will
rely on the following three propositions, the first of which is standard (e.g. Wainwright, 2019,
Proposition 2.5 and (2.18)).

Proposition 12 (Hoeffding-type and Bernstein-type tail bound). (a) Let a1, . . . , an ∈ R
and let X1, . . . , Xn be independent sub-Gaussian random variables with variance parameter 1.
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Algorithm 3: Pseudo-code for the ocd′ algorithm, a slight variant of ocd

Input: X1, X2, . . . ∈ Rp observed sequentially, β > 0, ã ≥ 0, T diag > 0 and T off > 0
Set: bmin = β√

2blog2(2p)c log2(2p)
, B0 = {±bmin},

B =
{
±2m/2bmin : m = 1, . . . , blog2(2p)c

}
, n = 0, Ab = Λb = Λ̃b = 0 ∈ Rp×p and

tb = τb = τ̃b = 0 ∈ Rp for all b ∈ B ∪ B0

repeat
n← n+ 1
observe new data vector Xn

for (j, b) ∈ [p]× (B ∪ B0) do

tjb ← tjb + 1 and A·,j
b ← A·,j

b +Xn

set δ = 0 if tjb is a power of 2 and δ = 1 otherwise.
τ jb ← τ jb δ + τ̃ jb (1− δ) + 1 and Λ·,j

b ← Λ·,j
b δ + Λ̃·,j

b (1− δ) +Xn

τ̃ jb ← (τ̃ jb + 1)δ and Λ̃·,j
b ← (Λ̃·,j

b +Xn)δ.

if bAj,jb − b2tjb/2 ≤ 0 then

tjb ← τ jb ← τ̃ jb ← 0
A·,j
b ← Λ·,j

b ← Λ̃·,j
b ← 0

Ξ·,j
b ← Λ·,j

b /(τ
j
b ∨ 1)1/2

Q̃j
b ←

∑
j′∈[p]\{j}(Ξ

j′,j
b )2

1{|Ξj
′,j
b |≥ã}

Sdiag ← max(j,b)∈[p]×(B∪B0)

(
bAj,jb − b2tjb/2

)
Soff ← max(j,b)∈[p]×B Q̃

j
b

until Sdiag ≥ T diag or Soff ≥ T off ;
Output: N = n
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Then

P
( n∑
i=1

aiXi ≥ x
)
≤ exp

(
− x2

2
∑n

i=1 a
2
i

)
for all x ≥ 0.
(b) Let a1, . . . , an ∈ R and let X1, . . . , Xn be independent sub-exponential random variables
with variance parameter 1 and rate parameter A > 0. Then

P
( n∑
i=1

aiXi ≥ x
)
≤ exp

{
−min

(
x2

2
∑n

i=1 a
2
i

,
Ax

2 maxi∈[n] |ai|

)}
for all x ≥ 0.

One special case where we apply this proposition frequently is with a1 = . . . = an = n−1/2.
The two bounds are then e−x

2/2 and e−x(x∧A
√
n)/2 respectively.

The following proposition can be used in place of Lemma 9 to control excursion probabil-
ities of sub-Gaussian and sub-exponential random walks with drift.

Proposition 13. Let µ ∈ R and let Y1, Y2, . . . be independent random variables. Define
Un :=

∑n
i=1 Yi for n ∈ N with U0 := 0, and let ξ := sargminn∈N0

µUn.
(a) Assume that Y1−µ, Y2−µ, . . . are independent sub-Gaussian random variables with vari-
ance parameter 1. Then

P(ξ ≥ y) ≤ P
(

inf
n∈N0:n≥y

µUn ≤ 0
)
≤ 3(µ−2 ∨ 1)e−yµ

2/2

for y ∈ [0,∞).
(b) Assume that Y1 − µ, Y2 − µ, . . . are independent sub-exponential random variables with
variance parameter 1 and rate parameter A > 0. Then

P(ξ ≥ y) ≤ P
(

inf
n∈N0:n≥y

µUn ≤ 0
)
≤ 3
( 1

µ2
∨ 1

µA
∨ 1
)
e−yµ(µ∧A)/2

for y ∈ [0,∞).

Proof. Following the same argument at the beginning of the proof of Lemma 9, it suffices to
only prove the latter inequality for both results for µ > 0.
(a) By a union bound and Proposition 12(a), we have

P
(

inf
n∈N0:n≥y

µUn ≤ 0
)
≤

∞∑
n=dye

P(Un ≤ 0) =
∞∑

n=dye

P(Un − nµ ≤ −nµ) ≤
∞∑

n=dye

e−nµ
2/2

≤ e−yµ
2/2

1− e−µ2/2
≤ e−yµ

2/2

µ2

4 log 2
∧ 1

2

≤ 3(µ−2 ∨ 1)e−yµ
2/2.

(b) Again, by a union bound and Proposition 12(b), we have

P
(

inf
n∈N0:n≥y

µUn ≤ 0
)
≤

∞∑
n=dye

P(Un − nµ ≤ −nµ) ≤
∞∑

n=dye

e−nµ(µ∧A)/2

≤ 3
( 1

µ2
∨ 1

µA
∨ 1
)
e−yµ(µ∧A)/2,
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where the last inequality follows from the last three inequalities in the proof for the (a) part,
with µ(µ ∧ A) taking the place of µ2.

Our final preparatory result will be used to modify (23) in the proof of Proposition 5,
which can be traced back to the proof of Chen et al. (2022, Theorem 1). Let b 6= 0, T diag > 0
and let Z1, Z2, . . . be independent centered random variables. We define the stopping time

Nos := inf
{
n ∈ N : b

n∑
t=1

(Zt − b/2) ≥ T diag
}
, (43)

where ‘os’ stands for one-sided. When Z1, Z2 . . .
iid∼ N(0, 1), we can use a sequential probability

ratio test argument to show that P(Nos < ∞) ≤ e−T
diag

. The aim of Proposition 14 below
is to establish similar bounds under the sub-Gaussian and the sub-exponential distributional
assumptions respectively.

Proposition 14. (a) Let b 6= 0, T diag > 0 and let Z1, Z2, . . . be independent sub-Gaussian
random variables each with variance parameter 1. Then Nos defined in (43) satisfies

P(Nos <∞) ≤ e−T
diag

.

(b) Let T diag > 0 and Z1, Z2, . . . be independent sub-exponential random variables with vari-
ance parameter 1 and rate parameter A > 0. Let b ∈ [−A,A] \ {0}. Then

P(Nos <∞) ≤ e−T
diag

.

Proof. Without loss of generality, assume b > 0 in part (a) and 0 < b < A in part (b).
The following argument then holds for both cases. Denote Sn :=

∑n
t=1 Zt with S0 := 0,

Vn := exp{(bSn − b2n/2) ∧ T diag} and Fn = σ(Z1, . . . , Zn) with F0 defined to be trivial
σ-algebra. Then for n ∈ N, we have

E[Vn | Fn−1] = E
[
Vn1{Vn−1<eT

diag}

∣∣ Fn−1

]
+ E

[
Vn1{Vn−1=eT

diag}

∣∣ Fn−1

]
≤ E

[
Vn−1e

bZn−b2/21{Vn−1<eT
diag}

∣∣ Fn−1

]
+ E

[
eT

diag

1{Vn−1=eT
diag}

∣∣ Fn−1

]
≤ Vn−11{Vn−1<eT

diag} + eT
diag

1{Vn−1=eT
diag} = Vn−1.

Hence (Vn)n≥0 is a supermartingale with respect to the filtration (Fn)n≥0. Since |Vn| ≤ eT
diag

for all n, we have by the Optional Stopping Theorem that

1 = EV0 ≥ EVNos = E
[
VNos1{Nos<∞} + VNos1{Nos=∞}

]
≥ eT

diagP(Nos <∞),

as required.

The modifications to the proofs of Theorems 1, 2 and 3, as well as Proposition 5 that
are needed in the sub-Gaussian and sub-exponential settings are as follows. In (7), (11),
(12), (14), (15), (16), (17), (25), (36), (39) and (41), we apply Proposition 12 in place of the
Gaussian tail bounds; in (8), (10) and (32), we apply Proposition 13 in place of Lemma 9;
and finally, we apply Proposition 14 to yield the bound corresponding to (23).
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5.5 Additional simulation results

Table 3 provides additional simulation results for the ocd CI procedure under spatial de-
pendence. The data generating mechanisms and conclusions from these results are given in
Section 4.2.

Table 3: Spatial dependence. Estimated coverage and average length of the ocd CI confidence
interval and average detection delay over 2000 repetitions, with standard errors in brackets,
under a Toeplitz cross-sectional covariance matrix Σ with entries Σjk = ρ|j−k| for j, k ∈ [p].
Other parameters: p = 100, β = ϑ, γ = 30000, z = 1000, α = 0.05, a = ã =

√
2 log p, c = 0.5,

d1 = c
√

log(p/α), d2 = 4d2
1.

ρ s ϑ Detection Delay Coverage (%) CI Length
0.5 2 2 13.9(0.1) 98.5(0.3) 35.5(1.0)
0.5 2 1 49.1(0.3) 99.0(0.2) 125.1(1.6)
0.5 2 0.5 172.5(1.0) 99.5(0.2) 447.0(2.8)
0.5 10 2 21.9(0.1) 98.7(0.3) 42.0(0.9)
0.5 10 1 76.1(0.5) 98.8(0.2) 154.2(1.5)
0.5 10 0.5 266.7(1.8) 99.0(0.2) 566.9(3.9)
0.5 100 2 52.1(0.3) 98.3(0.3) 106.8(0.9)
0.5 100 1 187.7(1.3) 98.4(0.3) 399.5(3.3)
0.5 100 0.5 655.3(5.0) 98.5(0.3) 1366.2(10.1)

0.75 2 2 13.9(0.1) 96.9(0.4) 51.1(2.6)
0.75 2 1 47.9(0.3) 96.8(0.4) 146.0(3.3)
0.75 2 0.5 171.5(1.1) 97.7(0.3) 463.8(4.2)
0.75 10 2 21.8(0.2) 96.4(0.4) 48.6(1.7)
0.75 10 1 75.3(0.5) 96.7(0.4) 165.0(2.7)
0.75 10 0.5 266.3(1.9) 96.0(0.4) 558.9(4.5)
0.75 100 2 50.9(0.3) 96.8(0.4) 106.8(1.2)
0.75 100 1 184.8(1.4) 95.6(0.5) 401.8(3.8)
0.75 100 0.5 647.3(5.4) 94.6(0.5) 1312.3(11.2)
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Dette, H. and Gösmann, J. (2020) A Likelihood Ratio Approach to Sequential Change Point
Detection for a General Class of Parameters. J. Amer. Statist. Assoc., 115, 1361–1377.

Duncan, A. J. (1952) Quality Control and Industrial Statistics. Richard D. Irwin Professional
Publishing Inc., Chicago.

Enikeeva, F. and Harchaoui, Z. (2019) High-dimensional Change-point Detection Under
Sparse Alternatives. Ann. Statist., 47, 2051–2079.

Follain, B., Wang, T. and Samworth, R. J. (2022) High-dimensional Changepoint Estimation
With Heterogeneous Missingness. J. Roy. Statist. Soc., Ser. B, 84, 1023–1055.
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Janková, J. and van de Geer, S. (2015) Confidence Intervals for High-dimensional Inverse
Covariance Estimation. Electron. J. Statist., 9, 1205–1229.

Javanmard, A. and Montanari, A. (2014) Confidence Intervals and Hypothesis Testing for
High-dimensional Regression. J. Mach. Learn. Res., 15, 2869–2909.

Jirak, M. (2015) Uniform Change Point Tests in High Dimension. Ann. Statist., 43, 2451–
2483.

Kaul, A., Fotopoulos, S. B., Jandhyala, V. K. and Safikhani, A. (2021) Inference on the
Change Point Under a High Dimensional Sparse Mean Shift. Electron. J. Statist., 15,
71–134.

Kirch, C. and Stoehr, C. (2019) Sequential Change Point Tests Based on U -statistics. arXiv
preprint, arxiv:1912.08580.

Liu, H., Gao, C. and Samworth, R. J. (2021) Minimax Rates in Sparse, High-dimensional
Changepoint Detection. Ann. Statist., 49, 1081–1112.
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