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Abstract We study two 2-dimensional Teichmüller spaces of surfaces with boundary and
marked points, namely, the pentagon and the punctured triangle. We show that their geom-
etry is quite different from Teichmüller spaces of closed surfaces. Indeed, both spaces are
exhausted by regular convex geodesic polygons with a fixed number of sides, and their
geodesics diverge at most linearly.
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1 Introduction

Let Σ be a connected, compact, oriented surface with (possibly empty) boundary and let
P ⊂ Σ be a finite (possibly empty) set of marked points. The Teichmüller space T (Σ, P)

is the set of equivalence classes of pairs (X, f ) where X is a bordered Riemann surface and
f : Σ → X is an orientation-preserving homeomorphism (called a marking). Two pairs
(X, f ) and (Y, g) are equivalent if there is a conformal diffeomorphism h : X → Y such
that g−1 ◦ h ◦ f is isotopic to the identity rel P . The Teichmüller metric on T (Σ, P) (to be
defined in Sect. 2) is complete, uniquely geodesic, and homeomorphic toRd for some d ≥ 0.
The dimension of T (Σ, P) is

d = 6g − 6 + 3b + 2n + m + σ

where g is the genus of Σ , b is the number of boundary components, n is the number of
interior marked points, m is the number of boundary marked points, and σ is the dimension
of the space of biholomorphisms X → X isotopic to the identity rel f (P) for any [(X, f )]
in T (Σ, P). This parameter σ is equal to

– 6 for the sphere;
– 4 for the sphere with 1 marked point;
– 3 for the disk;
– 2 for the torus, the sphere with 2 marked points, and the disk with 1 boundary marked

point;
– 1 for the annulus, the disk with 1 interior marked point, and the disk with 2 boundary

marked points;
– 0 otherwise.

Whenσ = 0, theTeichmüller spaceT (Σ, P) coincideswith the spaceof complete hyperbolic
metrics with totally geodesic boundary on Σ\P up to isometries isotopic to the identity.

After the pioneering work of Teichmüller, most people working on the subject restricted
their attention to the case where the surface Σ is closed. One reason for this choice is that
theorems are often simpler to state andprove in this context.Another reason is that bydoubling
a Riemann surface across its boundary, one obtains a closed surface with a symmetry, and
most results which are true for closed surfaces hold automatically for surfaces with boundary
via this doubling trick.

However, we feel that Teichmüller spaces of surfaceswith boundary should not be ignored.
They exhibit phenomena which are fundamentally different from the closed surface case.
Moreover, they embed isometrically inside Teichmüller spaces of closed surfaces via the
doubling trick. Thus what happens in these spaces also happens in spaces of closed surfaces.
Finally, they serve a pedagogical purpose: the low-dimensional Teichmüller spaces are fairly
easy to understand and illustrate the general theory in a concrete way.

For surfaces of small topological complexity, the Teichmüller metric can be described
explicitly. This is the case when (Σ, P) is

(1) the disk with at most 3 marked points on the boundary;
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(2) the disk with 1 marked point in the interior and at most 1 on the boundary;
(3) the sphere with at most 3 marked points;
(4) the disk with 4 marked points on the boundary;
(5) the disk with 1 marked point in the interior and 2 on the boundary;
(6) the disk with 2 marked points in the interior;
(7) the annulus with at most 1 marked point on the boundary;
(8) the sphere with 4 marked points;
(9) the torus with at most 1 marked point.

The Teichmüller space T (Σ, P) is a single point in cases (1)–(3), is isometric to R in cases
(4)–(7), and is isometric to the hyperbolic plane H2 with curvature −4 in cases (8) and (9).
We would like to add two entries to this list where we understand the Teichmüller metric at
least qualitatively, namely when (Σ, P) is

(10) the disk with 5 marked points on the boundary;
(11) the disk with 1 marked point in the interior and 3 on the boundary.

We call these surfaces the pentagon and the punctured triangle respectively, and denote
them and . Their Teichmüller spaces are 2-dimensional, yet are quite different from the
hyperbolic plane. Note that if (Σ, P) is

(12) the annulus with 2 marked points on the same boundary component,

then T (Σ, P) is isometric to T ( ) (see Sect. 2.5). Only twoTeichmüller spaces of dimension
at most 2 are missing from this list, namely when (Σ, P) is

(13) the disk with 2 marked points in the interior and 1 on the boundary;
(14) the annulus with 1 marked point on each boundary components.

The Teichmüller spaces for (13) and (14) are isometric to one another. We hope to return to
them in later work.

Our results are as follows.

Theorem 1 T ( ) is a nested union of convex, regular, geodesic pentagons.

Theorem 2 T ( ) is a nested union of convex, regular, geodesic triangles.

Note the following immediate consequence.

Corollary 1 The convex hull of any compact set in T ( ) or T ( ) is compact.

Proof Let C be a compact set in T ( ) or T ( ). By the previous theorem, C is contained
in some compact convex polygon P . The closed convex hull of C , being contained in P , is
therefore compact. ��

Whether this property holds for Teichmüller spaces in general is an open question of
Masur [19].

We use these exhaustions by polygons to estimate the rate of divergence between geodesics
in T ( ) and T ( ). In any metric space, the divergence between two distinct geodesic rays
γ1 and γ2 with γ1(0) = γ2(0) = p at distance t is defined as the infimum of lengths of
paths joining γ1(t) and γ2(t) outside the ball of radius t around p. In Euclidean space the
divergence is linear in t while it is exponential in hyperpolic space. Teichmüller spaces of
closed surfaces are in some sense hybrids between Euclidean spaces and hyperbolic spaces
since they contain quasi-isometric copies of both [7,16]. In that vein, Duchin and Rafi proved
in [8] that the divergence between geodesic rays is at most quadratic (and can be quadratic)
in Teichmüller spaces of closed surfaces with marked points, when the dimension is at least
4. In contrast, we show that divergence is at most linear in T ( ) and T ( ).
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Theorem 3 The rate of divergence between any two geodesic rays from the same point in
T ( ) or T ( ) is at most linear.

Finally, we observe that T ( ) and T ( ) have the following universal property.

Theorem 4 T ( ) and T ( ) both embed isometrically in T ( ), the Teichmüller space of
the hexagon, which in turn embeds isometrically in the Teichmüller space T (Σg) of any
closed surface of genus g ≥ 2 (without marked points).

Unlike Teichmüller disks, two distinct totally geodesic planes arising from such isometric
embeddings can intersect in more than one point, hence along a geodesic. This is explained
in Sect. 5.

2 Preliminaries

We start by recalling standard definitions and results from Teichmüller theory in their most
general form.We then specialize to the case of the pentagon and the punctured triangle where
many of these notions become quite simple.

2.1 Quasiconformal maps

A K -quasiconformal diffeomorphism between bordered Riemann surfaces is a diffeomor-
phism whose derivative at all points distorts oriented angles by a factor at most K , or
equivalently sends circles to ellipses of eccentricity at most K and preserves orientation
[2]. A K -quasiconformal homeomorphism is a limit of a sequence of Kn-quasiconformal
diffeomorphisms such that lim inf Kn ≤ K .

2.2 Teichmüller metric

The Teichmüller distance on T (Σ, P) is defined as

d([(X, f )], [(Y, g)]) = inf
1

2
log K

where the infimum is taken over all K ≥ 1 such that there exists a K -quasiconformal
homeomorphism h : X → Y with g−1 ◦ h ◦ f isotopic to the identity rel P .

From now on, wewill suppress the marking f : Σ → X from our notation. All we need to
remember is that any pair X, Y ∈ T (Σ, P) comes with an isotopy class of homeomorphism
X → Y rel the marked points.

2.3 Quadratic differentials

A quadratic differential on X ∈ T (Σ, P) is a tensor q which takes the form Q(z)dz2 in local
coordinates for some function Q which is holomorphic except possibly at the marked points,
where it is allowed to have simple poles. Near a boundary point, if we take a coordinate chart
which sends the boundary to the real axis, then it is required that the function Q be real along
the real axis. In other words, when evaluated at vectors tangent to the boundary of X , the
tensor q must return a value in R ∪ {∞}.

Away from the singularities of q , the holomorphic 1-form
√

q can be integrated along
arcs. On small enough simply-connected open sets this defines charts to C, called natural
coordinates, in which q becomes dz2 [22]. These can be used to decompose X into a union
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of Euclidean polygons with some sides identified via translations or central symmetries. The
polygons can actually be chosen to be rectangles with sides parallel to the coordinate axes
[13, p.213], in which case we call the decomposition a rectangular structure.

2.4 Teichmüller’s theorem

Teichmüller’s theorem states that for any X, Y ∈ T (Σ, P) with X = Y , the Teichmüller
distance d(X, Y ) is equal to 1

2 log K for some K -quasiconformal homeomorphism h : X →
Y in the correct homotopy class. Moreover, there exist quadratic differentials on X and Y
with respect to which h has derivative

±
(√

K 0
0 1/

√
K

)

in natural coordinates away from singularities.
Conversely, a quasiconformal homeomorphism h of the above form (called a Teichmüller

homeomorphism) has minimal quasiconformal constant K in its homotopy class. Further-
more, any K -quasiconformal homeomorphism g homotopic to h is equal to h unless Σ is an
annulus or a torus and P is empty, in which case g can be equal to h post-composed with a
biholomorphism of Y homotopic to the identity [6,24].

As a consequence, T (Σ, P) is uniquely geodesic and the geodesic rays from a point X
are in one-to-one correspondence with the quadratic differentials of unit area on X . Although
this seems to suggest that quadratic differentials are the tangent vectors to Teichmüller space,
they are really the cotangent vectors. Tangent vectors can be represented as ellipse fields, and
there is a natural bilinear pairing between tangent and cotangent vectors.

2.5 Covering constructions

Let f : (Σ, P) → (Π, Q) be an orbifold covering. This means that for every p ∈ Σ ,
there are neighborhoods U � p and V � f (p) as well as embeddings ϕ : U → R

2 and
ψ : V → R

2 such that ψ ◦ f ◦ ϕ−1 is the restriction of a quotient map R2 → R
2/G where

G is a finite subgroup of O(2). The pullback map σ f : T (Π, Q) → T (Σ, P) associates
to any complex structure τ on Π a complex structure σ f (τ ) on Σ in such a way that f is
holomorphic or anti-holomorphic away from orbifold points with respect to those structures.

A critical point of f is a point c ∈ Σ such that f is not injective in any neighborhood of
c with the following exception: if c ∈ Σ◦, f (c) ∈ ∂Π , and f is 2-to-1 in a neighborhood of
c, then c is not a critical point. In other words, interior points where f acts as the quotient by
a single reflection are not critical points. The set of critical points of f is denoted Crit( f ).

The following result is folklore [20, Section 6]. The special case where the covering is
assumed to be normal goes back to Teichmüller’s original paper [24, Section 28].

Theorem 5 If f : (Σ, P) → (Π, Q) is an orbifold covering such that

f −1(Q) = P ∪ Crit( f ),

then the pullback map σ f is an isometric embedding.

Proof The condition f −1(Q) = P ∪ Crit( f ) implies that the lift of a Teichmüller homeo-
morphism by f is again a Teichmüller homeomorphism. Indeed, simple poles of quadratic
differentials pullback to either simple poles at marked points or to singularities of order ≥ 0
at critical points. Since the quasiconformal dilatation of the Teichmüller homeomorphism
upstairs is the same as the one downstairs, distance is preserved. ��
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Fig. 1 Degree two orbifold coverings giving rise to isometries. The marked points are indicated in black and
the critical points in white

An isometric embedding of Teichmüller spaces arising in this way is known as a covering
construction. For example (see Fig. 1), there are orbifold coverings of degree 2 from

– the quadrilateral to the once-punctured bigon;
– the annulus to the quadrilateral;
– the annulus to the twice-punctured disk;
– the torus to the four-times-punctured sphere;
– the annulus with 2 marked points on the same boundary component to the pentagon;
– the annulus with 1 marked point on each boundary component to the twice-punctured

monogon.

All of these give rise to (surjective) isometries since the corresponding Teichmüller spaces
have the same dimension.

Another classical example comes from the doubling construction. Given a surface S =
(Π, Q)with nonempty boundary, its double R = (Σ, P) is the union of two copies of S, one
with each possible orientation, with the boundaries glued via the identity map. The double R
comes with an orientation-reversing involution exchanging the two copies of S. The quotient
by that involution is an orbifold covering f : R → S without critical points. Thus the
Teichmüller space of any surface with boundary embeds isometrically in the Teichmüller
space of some closed surface. The pullback map σ f : T (S) → T (R) is simply the doubling
construction, but done in the category of bordered Riemann surfaces. If S has genus g, b
boundary components, n interior marked points, and m boundary marked points, then R has
genus 2g + b − 1 and 2n + m marked points. Assuming S has negative Euler characteristic,
then

dim T (R) = 6(2g + b − 1) − 6 + 2(2n + m) = 2(6g − 6 + 3b + 2n + m) = 2 dim T (S).

By inspection, the same equation holds when S has non-negative Euler characteristic.
Theorem 4 from the introduction is an easy consequence of Theorem 5: one only has

to find appropriate orbifold coverings between the corresponding surfaces. The details are
provided in Sect. 5.

2.6 Measured foliations

A measured foliation on a compact surface (Σ, P) is a foliation with isolated prong sin-
gularities (1-prong singularities are only allowed at the marked points) equipped with an
invariant transverse measure [10, p.56]. The latter quantifies “how many” leaves of the foli-
ation are crossing any given transverse arc. For example, if q is a quadratic differential then
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its horizontal trajectories (maximal arcs along which q > 0) form a measured foliation with
transverse measure | Im√

q|.
A multiarc on (Σ, P) is an embedded 1-dimensional submanifold α of Σ\P with bound-

ary in ∂Σ\P such that

– no circle component of α bounds a disk or a once-punctured disk in Σ\P;
– no arc component of α bounds a disk with only 0 or 1 marked point on ∂Σ ;
– no two components of α are isotopic to each other in Σ rel P .

The first two conditions define what it means for a simple closed curve or simple arc to be
essential. A weighted multiarc is a multiarc together with a positive weight associated with
each of its components. We generally consider (weighted) multiarcs only up to isotopy rel
P . When we want to emphasize that we are talking about the isotopy class as opposed to a
specific representative, we will write [α] for the isotopy class of α.

Two measured foliations F and G are equivalent if i(α, F) = i(α, G) for every con-
nected multiarc α, where i(·, ·) is the geometric intersection number. The spaceMF(Σ, P)

of equivalence classes of measured foliations on (Σ, P) is given the weak topology by con-
sidering each measured foliation F as a function on connected multiarcs via α �→ i(α, F).
Every weighted multiarc β can be enlarged to a measured foliation Fβ on (Σ, P) such that
i(α, β) = i(α, Fβ) for every connected multiarc α. Thus the space of weighted multiarcs
embeds inside the space of measured foliations.

For any X ∈ T (Σ, P) and F ∈ MF(Σ, P), there exists a unique quadratic differential
qF on X whose horizontal foliation is equivalent to F . Moreover, the map F �→ qF is a
homeomorphism. This is called the Hubbard–Masur (or heights) theorem [12]. If F is a
weighted multiarc, then qF is called a Jenkins–Strebel differential.

Note that Hubbard andMasur only considered closed surfaces in their paper. However, this
implies the general result by standard tricks. IfΣ is closed and P is non-empty, then there is a
normal branched cover f : Π → Σ (of degree 2 if |P| is even and degree 4 if |P| is odd) such
that f −1(P) = Crit( f ) [1, Section II.4]. Given any F ∈ MF(Σ, P), consider the pullback
foliation f ∗F on Π . For any X ∈ T (Σ, P) there is a unique quadratic differential q f ∗ F

on σ f (X) ∈ T (Π) whose horizontal foliation is equivalent to f ∗F by the Hubbard–Masur
theorem for closed surfaces. But the deck group of f preserves f ∗F and hence q f ∗ F by
uniqueness. Thus q f ∗ F descends to a quadratic differential qF on X such that q f ∗ F = f ∗qF

and whose horizontal foliation is equivalent to F . Furthermore, the uniqueness of qF follows
from the uniqueness of q f ∗ F . This shows that the case of closed surfaces implies the case
of closed surfaces with marked points. Similarly, if Σ has non-empty boundary then we can
double across it and appeal to the preceding case.

The space of projective measured foliations PMF(Σ, P) is defined as the quotient of
MF(Σ, P)\{0} by positive rescaling. We will write F for the projective class of a measured
foliation F . It follows from the Hubbard–Masur theorem thatMF(Σ, P) is homeomorphic
toRd and thatPMF(Σ, P) is homeomorphic to Sd−1 where d is the dimension of T (Σ, P),
since the set of quadratic differentials on any X ∈ T (Σ, P) is a vector space of dimension
d .

2.7 Extremal length

There are three equivalent definitions for the extremal length of a weighted multiarc α =∑
hi · αi on a bordered Riemann surface X ∈ T (Σ, P). The first one is

EL(α, X) = sup
ρ

(ρ [α])2
Area(ρ)

(1)
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where the supremum is over all Borel-measurable conformal metrics ρ on X and

ρ [α] = inf
γ∈[α]

∑
i

hi

∫
γi

ρ

is the minimal weighted length of any rectifiable representative γ = ∑
hi · γi of α.

For example, the extremal length across a Euclidean rectangle is equal to its length divided
by its height, and the extremal length around a Euclidean cylinder is its circumference divided
by its height [2, p.10]. Taking this as the definition of the extremal length of a rectangle or
cylinder, the second definition for the extremal length of a weighted multiarc is

EL(α, X) = inf
∑

i

h2
i EL(Ri ) (2)

where the infimum is taken over all collections {Ri } of rectangles and cylinders embedded
conformally and disjointly in X with Ri homotopic to αi . For each arc component αi , the
rectangle Ri is required to haves its vertical sides contained in the boundary on X (think of
Ri as a thickening of αi ).

The third definition of extremal length is

EL(α, X) = Area(qα) (3)

where qα is the quadratic differential on X whose horizontal foliation is equivalent to α. This
definition extends to all measured foliations in view of the Hubbard–Masur theorem.

The equivalence between the three definitions is explained in [14]. See also [3] for exam-
ples, properties and applications of extremal length.

2.8 Kerckhoff’s formula

Teichmüller distance can be expressed in terms of extremal length via Kerckhoff’s formula
[15]:

d(X, Y ) = sup
F∈PMF(Σ,P)

1

2
log

EL(F, Y )

EL(F, X)
. (4)

Moreover, the supremum is realized precisely when F is the horizontal foliation of the initial
quadratic differential for the Teichmüller homeomorphism X → Y . Note that the supremand
in (4) does not depend on the choice of F ∈ F . Indeed, extremal length scales quadratically
in the sense that EL(λF, X) = λ2 EL(F, X) for every F in MF(Σ, P) and λ > 0.

3 Pentagons

3.1 Representation

An element of T ( ) is (an equivalence class of) a bordered Riemann surface X homeo-
morphic to the closed disk together with a 5-tuple x = (x1, x2, . . . , x5) of distinct points
appearing in counterclockwise order along ∂ X . Two pairs (X, x) and (Y, y) are equivalent if
there is a conformal diffeomorphism h : X → Y such that h(x j ) = y j for j = 1, . . . , 5. We
don’t need a marking from a base topological surface here, since the labelling of the marked
points provides the same information. For convenience, the index j will be taken modulo 5
so that 5 + 1 = 1 and 1 − 1 = 5.
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By the Riemann Mapping Theorem, every element of T ( ) can be represented uniquely
as the closed upper half-plane H ∪ {∞} with marked 5-tuple (x1, x2,∞,− 1, 0), where
0 < x1 < x2. In particular, we see that T ( ) is homeomorphic to R

2 via the coordinates(
H ∪ {∞}, (x1, x2,∞,− 1, 0)

)
�→ (log(x1), log(x2 − x1)).

One could also represent elements of T ( ) with the closed unit disk, but we found the upper
half-plane to be more convenient.

From the point of view of hyperbolic geometry, T ( ) is the space of ideal pentagons in
H

2 with labelled vertices, up to isometry, or the space of right-angled pentagons with labelled
vertices, up to isometry. There are other equivalent definitions. For example, T ( ) is the
space of Euclidean pentagons with five prescribed angles, up to similarity .

The elements in T ( ) can also be thought as geometric objects. Given any five angles
θ j ∈ [0, 2π) with sum less than 3π , T ( ) is the space of geodesic pentagons in H

2 with
consecutive interior angles θ j , up to isometry. Alternatively, T ( ) is the space of geodesic
pentagons in R2 with five prescribed consecutive interior angles θ j ∈ (0, 2π) adding to 3π ,
up to similarity. The equivalence between these descriptions is proved in [25].

3.2 The five axes of symmetry

The dihedral group D5 acts on T ( ) by permuting the labels of the marked points and
reversing orientation when the permutation does so. This action is isometric with respect to
the Teichmüller metric. There are 5 special geodesics in T ( ) given by the loci of fixed
points of the 5 reflections in D5. For example, the permutation (25)(34) fixes all pentagons
(X, x) which admit an anti-conformal involution h such that h(x1) = x1, h(x2) = x5 and
h(x3) = x4. This locus is a geodesic. Indeed, the quotient of by any of these reflections is
an orbifold covering onto a quadrilateral. Hence it gives rise to an isometric embedding of the
Teichmüller space of quadrilaterals into T ( ). But the Teichmüller space of quadrilaterals
is isometric to the real line by Grötzsch’s theorem (a special case of Teichmüller’s theorem).
By definition, a geodesic is an isometric embedding of the real line.

Let us denote by σ j the reflection in D5 which fixes the vertex labelled j . If (X, x)

is realized as the upper half-plane with marked points (x1, x2,∞,− 1, 0), then the locus
γ1 = Fix(σ1) is given by the equation x2 + 1 = (x1 + 1)2. The reason for this is that every
anti-conformal involution of H ∪ {∞} is either an inversion in a circle centered on the real
line or a reflection in a vertical line. Now, the the anti-conformal involution realizing the
permutation σ1 on (x1, x2,∞,− 1, 0) must fix x1, swap x2 and 0, and swap ∞ and − 1. The
involution is therefore equal to the inversion in the circle centered at − 1 passing through x1.
The above equation is just the condition that

|x2 − (−1)||0 − (−1)| = |x1 − (−1)|2.
Similarly,

– γ2 = Fix(σ2) has equation x1(x1 + 1) = (x2 − x1)2;
– γ3 = Fix(σ3) has equation x2 = x1 + 1;
– γ4 = Fix(σ4) has equation x1x2 = 1 subject to x1 < 1;
– γ5 = Fix(σ5) has equation (x2 − x1)(x2 + 1) = x22 .

Let φ =
(
1 + √

5
)

/2 be the golden ratio. We leave it to the reader to check that x1 = 1/φ

and x2 = φ satisfy all of the above equations. In other words, the regular pentagon (which
is fixed by all of D5) is conformally equivalent to the upper half-plane with marked points
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Fig. 2 The five axes of symmetry of T ( ) plotted in log-coordinates

(1/φ, φ,∞,− 1, 0). We call this point the origin of T ( ). The geodesics γ j all intersect at
the origin and this is the only intersection point of any two of them (Fig. 2).

3.3 Measured foliations

Measured foliations on the pentagon are of the simplest possible kind.

Lemma 1 Every measured foliation of is a weighted multiarc.

Proof Let F be a measured foliation on . It suffices to prove that every leaf of F is a proper
arc. Suppose not, i.e., let λ be a leaf of F which is recurrent to some part of . Let α be a
short arc transverse to F to which λ returns. Starting from α, follow λ until it first returns to
α. The region enclosed by these arcs is a disk. Doubling this disk across the boundary, we
get a measured foliation on the sphere with at most two 1-prong singularities (where α and
λ meet). But a measured foliation on the sphere must have at least four 1-prong singularities
by the Euler–Poincaré formula [10, p. 58]. ��
Remark 1 A similar argument shows that any measured foliation on an annulus or a pair of
pants is a weighted multiarc [22, Theorem 15.2].

A multiarc on can have either 1 or 2 components. Thus the space PMF( ) has the
structure of a graph whose vertices correspond to essential arcs and whose edges correspond
to pairs of disjoint essential arcs (the position of a point along an edge indicates the relative
weights on the corresponding arcs). Since there are 5 essential arcs in and each arc is
disjoint from exactly two other essential arcs, PMF( ) is isomorphic to a pentagon. We
use the following notation for the essential arcs in . For each j ∈ {1, 2, 3, 4, 5}, the arc α j

is the one which separates the vertex labelled j and its two neighbors in ∂ from the other
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Fig. 3 PMF( ) ∼= . In each
small pentagon, the bottom left
corner is the vertex labelled 1 and
the remaining vertices are
labelled in counterclockwise
order

α1

α3

α5

α2

α4

Fig. 4 An L-shape and a
degenerate L-shape

two vertices (see Fig. 3). Equivalently, α j is the isotopy class of essential arc which is sent
to itself by σ j .

3.4 Quadratic differentials

Similarly, quadratic differentials and the rectangular structures they induce on the pentagon
are easy to describe geometrically.

Lemma 2 Every rectangular structure on is a (possibly degenerate) L-shape.

Proof Let q be a quadratic differential on H ∪ {∞} with marked points at x1, x2, ∞, − 1
and 0. Recall that q has at most simple poles at the marked points. Since q is real along R,
it extends to a quadratic differential on Ĉ which is symmetric about the real axis. By the
Euler–Poincaré formula (or by considering the quadratic differential dz2, which has a pole
of order 4 at infinity), the degree of the divisor of q is −4.

If q has exactly 4 simple poles, then it has no other singularities and the corresponding
rectangular structure is a rectangle. This is because the sign of q along R changes exactly at
the poles, so the image of H ∪ {∞} under the natural coordinate for q is a polygon with 4
sides which are alternatingly horizontal and vertical. Note that the rectangle has one marked
point along one of its sides in this case. We call this a degenerate L-shape (see Fig. 4).

Otherwise, q has a simple pole at each of the 5 marked points as well as 1 simple zero.
Since the zeros of q are symmetric about the real axis, its only zero must be on the real line.
Therefore the natural coordinate z �→ ∫ z

i
√

q is globally defined on H ∪ {∞}. Its image is
an immersed polygon with sides parallel to the axes, 5 corners of angle π/2 (corresponding
to the poles) and 1 corner of angle 3π/2 (corresponding to the zero). Any such polygon is
actually embedded, and looks like the letter L up to reflections in the coordinate axes. ��
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Fig. 5 The cyclic order and
orientation of the axes of
symmetry in T ( ). The
backward direction of each axis
is dashed. PMF( ) is drawn to
indicate the projective class of the
vertical foliation for each ray.
This is intended only as a visual
guide; it does not correspond to a
compactification of T ( )

α1

α3

α5

α2

α4

γ+
1

γ+
3

γ+
5

γ+
2

γ+
4

Remark 2 The natural coordinate

f (z) =
∫ z

i

√
q =

∫ z

i

√
a(w − b)

(w + 1)w(w − x1)(w − x2)
dw

that appears in the above proof is commonly known as the Schwarz–Christoffel formula for a
conformal mapping ofH∪{∞} onto a pentagon with angles π/2 at the images of the marked
points and angle 3π/2 at f (b). This is unless b coincides with one of the marked points, in
which case the angle at f (b) is π . Teichmüller used this formula in [new reference above]
to prove his existence theorem for pentagons. He had already considered the pentagon as a
simple case of his uniqueness theorem in [23, Sect. 129].

3.5 Parametrizing the axes

We parametrize each of the 5 geodesics γ j by arclength with γ j (0) equal to the origin. It
remains to orient them. Since γ j is fixed pointwise by the reflection σ j , the horizontal and
vertical foliations for its defining quadratic differential are also fixed by σ j . Up to scaling,
there are only two measured foliations invariant by σ j , namely α j and α j−1 + α j+1. We
orient γ j by declaring that α j−1 + α j+1 is the horizontal foliation and α j is the vertical
foliation for the quadratic differential. This way, α j gets pinched along γ j in the sense that
EL(α j , γ j (t)) → 0 as t → +∞.

The origin splits the 5 geodesics γ j into 10 rays γ ±
j , and their order of appearance around

the origin is the same as the order of appearance of their vertical foliation in PMF( ).
This implies that γ +

1 is followed by γ −
2 , then γ +

3 , and so on (see Fig. 5). In other words, the
geodesics appear in sequential order around the origin but with alternating orientation.

3.6 Half-planes

We define an open half-plane in T ( ) to be either connected components of the complement
of a geodesic. A closed half-plane is the closure of an open half-plane, i.e., an open half-plane
together with its defining geodesic.

Lemma 3 Closed half-planes are convex.
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Proof Suppose that a closed half-plane H is not convex. Then there is a geodesic segment
[x, y] with endpoints in H which is not contained in H . Consider a maximal subinterval
(z, w) ⊂ [x, y] which is contained in the complement of H . Then z and w belong to ∂ H by
maximality. Since ∂ H is a geodesic and the geodesic between any two points is unique, the
segment [z, w] is contained in ∂ H ⊂ H , which is a contradiction. ��
3.7 Pentagons in the space of pentagons

For any t > 0, we define Pt to be the geodesic pentagon with vertices γ1(t), γ3(t), γ5(t),
γ2(t) and γ4(t) together with the region it bounds. More precisely,

Pt =
5⋂

j=1

H j (t)

where H j (t) is the closed half-plane bounded by the geodesic through γ j (t) and γ j+2(t)
which contains the origin.

Lemma 4 Pt is convex for any t > 0.

Proof Pt is the intersection of 5 closed half-planes each of which is convex. ��
Lemma 5 If 0 < s < t , then Ps ⊂ Pt .

Proof First observe that the vertices of Ps are contained in Pt . Since Ps is the convex hull
of its vertices and Pt is convex, the inclusion follows. ��

By construction, Pt is also regular since D5 acts on it by isometries in a faithful manner.
The only part of Theorem 1 left to prove is that T ( ) = ⋃

t>0 Pt .

3.8 Symmetric geodesics

In order to prove that the pentagons Pt exhaust T ( ), we will shift our point of view slightly.
We need to better understand the geodesics that form the sides of Pt . What can we say
about the geodesic through γ2(t) and γ5(t) for example? What do the underlying rectangular
structures look like? To answer this, observe that the isometry of T ( ) induced by the
permutation σ1 switches the points γ2(t) and γ5(t). Therefore it sends the geodesic through
γ2(t) and γ5(t) to itself in an orientation-reversing manner, thereby fixing the midpoint of
the segment [γ2(t), γ5(t)].

We will say that a geodesic which is sent to itself in an orientation-reversing manner by σ1
is symmetric about γ1. It is interesting to note that the geodesics symmetric about γ1 foliate
T ( ). This is analogous to the existence and uniqueness of perpendiculars in the Euclidean
plane and the hyperbolic plane.

Lemma 6 For any x ∈ T ( ), there exists a unique geodesic through x which is symmetric
about γ1.

Proof First assume that x does not belong to the axis of reflection γ1. Then σ1(x) = x and
the geodesic through these two points is sent to itself in an orientation-reversing manner by
σ1. Conversely, if η is a geodesic containing x and σ1(η) = η, then η contains σ1(x), which
proves uniqueness.

Now suppose that x ∈ γ1. Consider a non-zero tangent vector v to γ1 at x . The space
of quadratic differentials q on x which pair trivially with v is 1-dimensional. Let q = 0 be
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a
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x1 x2

x3

x4x5

x1 x2

x3

x4x5

α1

Fig. 6 The symmetric L-shape Φa and an embedded circular rectangle homotopic to α1

such a quadratic differential. Since σ1 fixes v and preserves the pairing between tangent and
cotangent vectors, it sends q to a quadratic differential of the same norm which pairs trivially
with v yet is different from q , i.e., to −q . Thus σ1 sends the geodesic cotangent to q to the
geodesic cotangent to −q , that is, to itself in an orientation-reversing manner.

Conversely, let η be a geodesic through x which is symmetric about γ1 and let q be its
unit cotangent vector at x . Then σ1 sends q to −q while it fixes v. Since σ1 is an isometry, it
preserves the pairing between tangent and cotangent vectors, so that

〈v, q〉 = 〈v,−q〉 ⇒ 〈v, q〉 = 0.

As we observed before, the orthogonal complement v⊥ is 1-dimensional, which means that
q is determined up to a scalar and that η is unique. ��

Actually, the geodesics symmetric about γ1 can be described explicitly. For any a > 0,
consider the L-shape Φa with vertices at 0, (1 + a), (1 + a) + i , 1 + i , 1 + (1 + a)i and
(1 + a)i where all vertices except 1 + i are marked and the first marked point is the origin
(see Fig. 6). Let R be the reflection about the line y = x . Observe that R(Φa) = Φa and that
R acts as the permutation σ1 = (25)(34) on the marked points. Thus Φa represents a point
on γ1. More generally, for any t ∈ R we have

R

((
et 0
0 e−t

)
· Φa

)
=

(
e−t 0
0 et

)
· Φa

meaning that Teichmüller flow followed by reflection is the same as negative Teichmüller
flow. In particular, the Teichmüller geodesic ηa = {gtΦa | t ∈ R} cotangent to Φa is sent to
itself in an orientation-reversing manner by σ1.

Remark 3 The geodesic η1/4 was used in [11] to prove the existence of a non-convex ball
in T ( ). The proof presented there implies that some ball B centered on γ1 is such that a
segment of η1/4 symmetric about γ1 has its endpoints in B but its midpoint Φ1/4 outside B.
However, the ball B could have very large radius a priori. In the course of this project, we
found numerical evidence suggesting that there is a non-convex ball of radius less than 1.

We now show that every geodesic symmetric about γ1 is of this form.
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Proposition 1 Any geodesic symmetric about γ1 is equal to ηa for a unique a > 0.

Proof We already observed that ηa is symmetric about γ1 for any a > 0. If τ is a geodesic
symmetric about γ1, then it intersects γ1 at some point x . By uniqueness of the symmetric
geodesic through x , it suffices to prove that x ∈ ηa for a unique a > 0. In other words, we
have to show that the map a �→ Φa from (0,∞) to γ1 is a bijection.

Observe that γ1(t) can be represented by a rectangle of length et/
√

c0 and height
√

c0e−t

with vertex x1 in themiddle of the left side,where c0 = EL(α1, γ1(0)). Indeed, this describes a
Teichmüller geodesic fixed pointwise by σ1. In particular, the map γ1(t) �→ EL(α1, γ1(t)) =
c0e−2t is a bijection from γ1 to (0,∞). Thus in order to prove the above statement, it suffices
to show that the map

a �→ EL(α1, Φa)

is a bijection of (0,∞) onto itself.
If 0 < a < b, then Φa ⊂ Φb. Let q be the quadratic differential on Φa realizing the

extremal length of α1 and let ρ = √|q| be the corresponding conformal metric. We extend
ρ to a conformal metric ρ̃ on Φb by setting it to be 0 on Φb\Φa . Every arc homotopic to α1

on Φb contains a subarc homotopic to α1 on Φa so that

ρ̃ [α1] = ρ [α1].
Clearly, ρ̃ is not the extremal metric on Φb hence

EL(α1, Φb) >
(ρ̃ [α1])2
Area(ρ̃)

= (ρ [α1])2
Area(ρ)

= EL(α1, Φa).

This shows that extremal length is monotone in a.
It remains to prove surjectivity. For 0 < a < 1√

2−1
, the L-shape Φa contains a quarter of

an annulus centered at (1 + a) + (1 + a)i with inner radius a
√
2 and outer radius (1 + a)

(see Fig. 6). The extremal length around this circular strip is equal to

π/2

log(1 + a) − log(a
√
2)

which is an upper bound for EL(α1, Φa). This implies that EL(α1, Φa) → 0 as a → 0. On
the other hand, the Euclidean metric ρ on Φa gives the lower bound

EL(α1, Φa) ≥ (2a)2

1 + 2a

which tends to infinity with a. By continuity, every positive value is attained. ��
Let Ua be the closed half-plane bounded by ηa which points towards γ +

1 . By Lemma 6
and Proposition 1, these half-planes exhaust T ( ) as a ↗ ∞. Similarly, the sets

Qa =
5⋂

j=1

σ j (Ua)

exhaust T ( ) as a ↗ ∞. This almost implies what we want. The issue here is that a priori
Qa could be non-compact for large a, as would happen in the hyperbolic plane for example.
What we need to show is that each side of Qa intersects its neighbors and hence that Qa is
equal to Pt for some t > 0, provided that a is large enough so that Qa is not empty. Figure 7
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Fig. 7 T ( ) is foliated by
geodesics ηa symmetric about
γ1. The projective horizontal and
vertical foliations for ηa are
α4 + aα2 and α3 + aα5
respectively

α1

α3

α5

α2

α4

suggests the proof: the projective classes of the horizontal and vertical foliations for ηa are
linked with those of σ5(ηa) in PMF( ), forcing ηa and σ5(ηa) to intersect.

In order to make that argument rigorous, one needs to put a topology on

T ( ) ∪ PMF( )

in which the closure of ηa disconnects the endpoints of σ5(ηa). Thurston’s compactification
[10, p.118] —which is homeomorphic to a closed disc— does the job. Usually, Thurston’s
compactification is treated for closed surfaces with marked points but the results extend to
surfaces with boundary via the doubling trick [4, Section 3].

ByLemma1every geodesic ray inT ( ) is Jenkins–Strebel, hence converges inThurston’s
boundary to the vertex corresponding to its vertical foliation or to the center of the open edge
containing its vertical foliation [18]. In particular, the geodesics ηa all converge to α4 + α2

in the backward direction and to α3 + α5 in the forward direction, while σ5(ηa) converges
to α1 + α3 and α2 + α5. These pairs of points are linked in PMF( ) so that ηa and σ5(ηa)

intersect. TheDeligne-Mumford compactificationwouldwork equallywell for this argument.
The latter is also isomorphic to a closed pentagon in this case, but is in some sense dual to
Thurston’s compactification. The interior of each side of this compactification corresponds
to pentagons where a single essential arc has been pinched and can thus be identified with the
Teichmüller space of quadrilaterals. The vertices correspond to pinched maximal multiarcs.
For instance, the geodesics ηa all share the same endpoints in that compactification, located
at two non-adjacent vertices. See [9] for more on moduli spaces whose Deligne- Mumford
compactification is isomorphic to a convex polytope.

Wewill give another proof that ηa intersects σ5(ηa)which yieldsmore information such as
estimates on the lengths of the sides of Qa . Observe that ηa intersects σ5(ηa) if and only if ηa

intersectsγ5, and this iswhatwewill show.Todo this,wewill characterizeγ5 as the set of solu-
tions to an equation involving extremal length and then use the intermediate value theorem.

3.9 Equal extremal lengths implies symmetry

Recall that α5 is the arc in which separates the vertices 4, 5, 1 from 2 and 3. By conformal
invariance of extremal length, if X ∈ γ5 then

123



Geom Dedicata (2018) 197:193–227 209

EL(α1, X) = EL(α4, X)

as σ5 permutes the arcs α1 and α4. The converse is also true.

Lemma 7 Let X ∈ T ( ). Suppose that EL(α1, X) = EL(α4, X). Then X ∈ γ5, i.e., X
admits an anti-conformal involution fixing the vertex x5.

Proof Map X conformally onto a rectangle in such a way that the vertex x5 is on a side and
the other vertices are at the corners of the rectangle. Suppose that the segment [x4, x5] is
strictly shorter than [x5, x1]. Then the topological quadrilateral joining [x4, x5] to [x2, x3]
embeds conformally in (and is different from) the quadrilateral joining [x5, x1] to [x2, x3].
To see this, simply reflect about the perpendicular bisector of [x4, x1]. By monotonicity of
extremal length, this implies that

EL(α1, X) > EL(α4, X)

which is a contradiction. As the argument is symmetric in x1 and x4, the vertex x5 must lie
in the middle of its side. The reflection of the rectangle about the perpendicular bisector of
[x4, x1] is an anti-conformal involution of X fixing x5. ��
3.10 Extremal length estimates

By the previous subsection, γ5 is the locus of points X in T ( ) such that

EL(α1, X) = EL(α4, X).

Recall also that ηa = {gtΦa | t ∈ R} where gt is the diagonal matrix

(
et 0
0 e−t

)
and Φa is the

symmetric L-shape with legs of length a. Note that gtΦa is conformally equivalent to htΦa

where ht =
(

e2t 0
0 1

)
. We will use this rescaling when convenient for calculations.

Proposition 2 If a ≥ 2, then ηa intersects γ5. More precisely, gtΦa belongs to γ5 for some
t ∈ [0, log(1 + a)].

We break down the proof into several lemmata. The main idea is that at t = 0 we have
EL(α1, gtΦa) ≥ EL(α4, gtΦa) while the inequality is reversed at t = log(1 + a). By the
intermediate value theorem, equality occurs somewhere in between.

Lemma 8 For every a > 0, we have

EL(α1, Φa) ≥ 4a2

1 + 2a
.

Proof Use the first definition of extremal length with the Euclidean metric on Φa (see the
proof of Proposition 1). ��
Lemma 9 For every a > 0, we have

EL(α4, Φa) ≤ 1 + a.

Proof There is a horizontal rectangle of length 1+a and height a embedded in the homotopy
class of α4. ��
Corollary 2 If a ≥ 3+√

17
4 , then EL(α1, Φa) ≥ EL(α4, Φa).
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x1 x2

x3
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α1 Γ

Fig. 8 The conformal metric ρ in the proof of Lemma 10 is equal to the Euclidean metric on the shaded
region and zero elsewhere. Every arc in the family � has length at least 1 with respect to ρ. The extremal
length of α1 is the reciprocal of the extremal length of �

Proof The condition implies

4a2

1 + 2a
≥ 1 + a.

The conclusion follows from the previous lemmata. ��
Lemma 10 For every a > 0 and t > 0, we have

EL(α1, gtΦa) ≤ 1 + a + e2t a.

Proof Let K = e2t . Let � be the family of all essential arcs in which intersect every
representative of α1. As a set we have � = α2 ∪ α5. This should not be confused with
α2 + α5: each element of � is a single arc, not a multiarc. By duality of extremal length for
rectangles,

EL(α1, gtΦa) = 1

EL(�, gtΦa)
= 1

EL(�, htΦa)
.

Indeed, recall that the extremal length of the family of arcs joining the vertical sides a rectangle
is equal to its length divided by its height [2, p.10], hence is the reciprocal of the extremal
length of the family of arcs joining the horizontal sides.

Consider the metric ρ which is defined to be |dz| at points in htΦa with real part bigger
than (K − 1) and 0 elsewhere. In other words, ρ is the Euclidean metric on htΦa but with
a (K − 1) × (1 + a) rectangle cut off on the left (Fig. 8). The distance across the leftover
region (from the two upper-right sides to the two lower-left sides) is at least 1, while its area
is equal to 1 + a + K a. This shows that

EL(�, htΦa) ≥ 1

1 + a + K a

from which the conclusion follows. ��

Lemma 11 For every a > 0 and t > 0, we have

EL(α4, gtΦa) ≥ e2t
(

1

1 + a
+ a

)
.
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Proof Let K = e2t . Consider the metric ρ on htΦa which is equal to |dz|/(1 + a) on
[0, K ] × [0, 1 + a] and |dz| on (K , K (1 + a)] × [0, 1]. This choice comes from the series
law for extremal length: α4 crosses the previous two rectangles, hence its extremal length

is at least the sum of theirs. Indeed, ρ has area K
(

1
1+a + a

)
and the ρ-length of any arc γ

homotopic to α4 is at least K
(

1
1+a + a

)
. Thus

EL(α4, gtΦa) = EL(α4, htΦa) ≥
K 2

(
1

1+a + a
)2

K
(

1
1+a + a

) = K

(
1

1 + a
+ a

)
.

��
Corollary 3 If a > 0 and t ≥ log(1 + a), then EL(α1, gtΦa) ≤ EL(α4, gtΦa).

Proof The condition on t implies that

1 + a + e2t a ≤ e2t
(

1

1 + a
+ a

)

which gives the desired result in view of the preceding lemmata. ��
As indicated earlier, Proposition 2 follows from Lemma 7, Corollary 2, Corollary 3 and

the intermediate value theorem. By symmetry, ηa also intersects γ2 = σ1(γ5) provided that
a ≥ 2. Therefore the convex set Qa coincides with Pt for some t > 0, and this concludes
the proof of Theorem 1.

3.11 Inner and outer radii

It follows from Proposition 2 that the pentagon Qa has perimeter at most 10 log(1+ a). We
also want to estimate the inner and outer radii of Qa with respect to the origin.

Lemma 12 There exists a constant C1 > 0 such that for every a > 0, the pentagon Qa

contains a ball of radius 1
2 log a − C1 around the origin.

Proof Denote the origin by X0. By taking C1 larger than 1
2 log 2, we may assume that a ≥ 2.

In view of Proposition 2, it suffices to show that d(X0, gtΦa) ≥ 1
2 log a − C1 for every

t ∈ [0, log(1 + a)]. By Kerckhoff’s formula (4) we have

d(X0, gtΦa) ≥ 1

2
log

EL(α1, gtΦa)

EL(α1, X0)
.

Let K = e2t . Using the Euclidean metric on htΦa , we estimate

EL(α1, gtΦa) = EL(α1, htΦa) ≥ (a + K a)2

K (1 + 2a)
= (K + 1)2a2

K (1 + 2a)
≥ 4a2

1 + 2a
≥ 4

3
a

where we used the inequalities (K + 1)2 ≥ 4K and 3a ≥ 1 + 2a. The result follows by
taking

C1 ≥ 1

2
log

3 EL(α1, X0)

4
.

��
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Lemma 13 There exists a constant C2 > 0 such that for every a > 0, the pentagon Qa is
contained in a ball of radius log a + C2 around the origin.

Proof Since Qa ⊂ Qb if a ≤ b, we may assume that a ≥ 2. Once again, it suffices to bound
d(X0, gtΦa) from above for t ∈ [0, log(1 + a)]. By the triangle inequality,

d(X0, gtΦa) ≤ d(X0, Φa) + d(Φa, gtΦa) ≤ d(X0, Φa) + t ≤ d(X0, Φa) + log(1 + a).

Since Φa is on the ray γ −
1 , we have the equality

d(X0, Φa) = 1

2
log

EL(α1, Φa)

EL(α1, X0)

in Kerckhoff’s formula. According to Lemma 10, EL(α1, Φa) ≤ 1 + 2a. The result follows
by combining the above inequalities with (1+a) ≤ 2a and (1+2a) ≤ 3a (recall that a ≥ 2).
��
Corollary 4 There exits a constant C3 > 0 such that for every t > C3, the pentagon Qa

with a = e8t/3 contains the ball of radius t around the origin and is contained in the ball of
radius 3t around the origin.

Proof If t is large enough then

t ≤ 4t

3
− C1 = 1

2
log a − C1 and log a + C2 = 8t

3
+ C2 ≤ 3t

where C1 and C2 are the constants from Lemma 12 and Lemma 13. The result follows from
these. ��
3.12 Linear divergence

Given two geodesic rays η and ν starting from the same point p in T ( ), the divergence
div(η, ν, t) is defined as the distance between η(t) and ν(t) as measured along paths disjoint
from the open ball of radius t centered at p. We can now prove that rays from the origin
diverge at most linearly.

Proposition 3 There exists a constant C > 0 such that for any two geodesic rays η and ν

starting from the origin in T ( ) and any t > 0 we have

div(η, ν, t) ≤ 18t + C.

Proof By adjusting the constant C if necessary, it is enough to prove the inequality for t
large. Assume that t > C3, the constant given in Corollary 4. Then the pentagon Qa with
a = e8t/3 contains the ball of radius t around the origin, and is contained in the ball of radius
3t .

We construct a path from η(t) to ν(t) as follows. From η(t) we continue along the same
ray to reach Qa then go around ∂ Qa to the intersection x between ν and ∂ Qa on the shortest
of the two sides, then back to ν(t) along ν. The constructed path has length at most twice
the difference between the outer and inner radius of Qa plus half the perimeter of Qa . This
gives an upper bound of

4t + 5 log(1 + e8t/3) ≤ 4t + 40t

3
+ log 2 = 52t

3
+ log 2 ≤ 18t + log 2.

��
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Using the triangle inequality, it is not hard to deduce that a similar estimate holds for rays
starting from any point, which is the content of Theorem 3 for T ( ).

Corollary 5 For any p ∈ T ( ), there exists a constant D > 0 such that for any geodesic
rays η and ν from p and any t > 0 we have

div(η, ν, t) ≤ 18t + D.

Proof Let X0 be the origin of T ( ) and let b = d(X0, p). We will show that the result holds
with D = 22b + C where C is the constant from Proposition 3. By the triangle inequality
we have

t − b ≤ d(X0, η(t)) ≤ t + b

and similarly for ν(t). It follows from the intermediate value theorem that there exists some
s ∈ [t, t+2b] such that d(X0, η(s)) = t+b and some s′ ∈ [t, t+2b] such that d(X0, ν(s′)) =
t + b.

We can now construct an efficient path between η(t) and ν(t). From η(t), we follow η to
η(s). By Proposition 3, there is a path of length at most 18(t + b) + C between η(s) and
ν(s′) which is disjoint from the ball B(X0, t + b), hence disjoint from B(p, t). We complete
the path by following ν from ν(s′) to ν(t). The total length is at most

2b + (18(t + b) + C) + 2b = 18t + D.

��
Presumably, the dependence of the constant D on the point p can be removed (cf. [8]),

but this does not seem to follow from our methods.
It turns out that the divergence between geodesic rays in T ( ) is often sublinear. Since

every quadratic differential on is Jenkins-Strebel, a result of Masur [17] (see also [5])
implies that two geodesic rays in T ( ) stay a bounded distance apart if and only if the
corresponding vertical foliations are topologically equivalent.1 This condition means that if
we forget the weights, then the underlying multiarc is the same. Said differently, two rays
in T ( ) stay a bounded distance apart if and only if the corresponding projective vertical
foliations are equal or lie in the same open edge of PMF( ).

We claim that the divergence between two rays η and ν that stay a bounded distance
apart is also bounded. Indeed, Masur’s construction of quasiconformal homeomorphism
ft : η(t) → ν(t)with bounded dilatation can be turned into a path of bounded length joining
η(t) and ν(t) which stays outside the ball of radius t − C centered at η(0) = ν(0) for some
constant C > 0 that does not depend on t . This is because ft can be taken to be a fixed
quasiconformal map in a neighborhood of the critical vertical trajectories and diagonal affine
elsewhere. The affine part can be performed gradually to obtain a path. Since we will not use
this claim in the sequel, we will not give any further details.

4 Punctured triangles

We prove similar results for the Teichmüller space T ( ) of punctured triangles.

1 Masur only considers closed surfaces in [17], but the proof extends essentially verbatim to surfaces with
boundary. Alternatively, one can apply Masur’s theorem to the doubles of the surfaces in question. As we
noted in Theorem 5, distance is preserved by doubling.
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4.1 Representation

An element of T ( ) is (an equivalence class of) a bordered Riemann surface X homeomor-
phic to the closed disk together with a 4-tuple (x0, x1, x2, x3) where x0 ∈ X◦ and x1, x2 and
x3 are distinct and appear in counterclockwise order along ∂ X . Two pairs (X, x) and (Y, y)

are equivalent if there is a conformal diffeomorphism h : X → Y such that h(x j ) = y j for
every j ∈ {0, 1, 2, 3}. Again, the labelling of distinguished points plays the same role as a
marking → X .

By the Riemann Mapping Theorem, every element of T ( ) can be represented uniquely
as the closed unit disk D with x0 ∈ D, x1 = 1, x2 = e2π i/3 and x3 = e4π i/3. With this
normalization, x0 ∈ D is the only parameter. Hence T ( ) is homeomorphic to D or R2.

4.2 The three axes of symmetry

The dihedral group D3 acts on T ( ) by permuting the labels of the boundary marked points
and reversing orientation when the permutation does so. This action is isometric with respect
to the Teichmüller metric. Let σ1 = (23), σ2 = (13) and σ3 = (12). The locus γ j of fixed
points of σ j is a geodesic since the quotient of by σ j is a quadrilateral. If (X, x) is realized
as the closed unit disk with marked points

(x0, x1, x2, x3) = (x0, 1, e2π i/3, e4π i/3)

then γ j is the intersection of the straight line through 0 and x j with D. The most symmetric
configuration is when x0 = 0; we call this point the origin of T ( ).

4.3 Measured foliations

All measured foliations on the punctured triangle are tame, just like on the pentagon (see
also [22, Theorem 15.2]).

Lemma 14 Every measured foliation on is a weighted multiarc.

Proof Let F be a measured foliation on . It suffices to prove that every leaf of F is a proper
arc. Suppose not and let λ be a leaf of F which is recurrent to some part of . Let α be a
short arc transverse to F to which λ returns. Starting from α, follow λ until it first returns
to α. The region enclosed by these arcs is a disk that possibly includes the interior marked
point of . By doubling this disk across the boundary, we get a measured foliation G on the
sphere with at most four 1-prong singularities: at the two intersection points of α and λ as
well as at the interior marked point and its mirror image in the double. By the Euler–Poincaré
formula, G has exactly four 1-prong singularities and no other singularities. This implies that
λ intersects α from the same side at the two intersection points, for otherwise one of these
intersection points would form a 3-prong singularity in the double (Fig. 9). But this argument
applies to all intersection points between λ and α, which means that they intersect only twice.
Indeed, the next intersection would have to be from the other side of α. This contradicts the
hypothesis that λ is recurrent. ��

There are two types of essential arcs in . There are those which separate two boundary
marked points from the other twomarked points, and thosewhich separate the interiormarked
point from the 3 boundary ones. We label the former ones by α j and the latter ones by β j in
such a way that each of α j and β j is preserved by the reflection σ j (see Fig. 10). Thought
of as the arc graph, PMF( ) is an hexagon with a bicoloring of its vertices. Indeed, the
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α

α

λ
λ

Fig. 9 The disk bounded by α and λ in the proof of Lemma 14. The situation on the left is forbidden by the
Euler–Poincaré formula; it would force a singularity of index −2 at the interior marked point

Fig. 10 PMF( ) is an
hexagon with D3 symmetry and
two types of vertices. In each
small triangle, the bottom left
vertex is labelled 1 and the other
vertices are labelled in
counterclockwise order

α3

α1

β3

α2

β1 β2

γ1

γ2

γ3

vertices α j and the vertices β j form disjoint orbits under the action of the extended mapping
class group D3.

4.4 Quadratic differentials

Lemma 15 Every rectangular structure on is either a rectangle or an L-shape with one
of its horizontal segments folded in two.

Proof Let q be a quadratic differential on X ∈ T ( ). It is easy to see that q must have a
simple pole at the interior marked point x0. Indeed, q extends by symmetry to the double X̃
of X , which is a sphere with 5 points marked. If q did not have a pole at x0, its extension q̃
would have at most 3 simple poles. The latter is forbidden by the Euler–Poincaré formula.
Cut X along the horizontal trajectory λ from x0 and call the resulting surface Y . Note that
x0 does not need to be marked in Y , as it unfolds to a regular boundary point (the total
angle around it is π). However, the other endpoint of λ on ∂ X corresponds to 2 points in
∂Y which we both mark. Thus Y is a disk with 4 or 5 boundary marked points (depending
on whether λ ends at a marked point of X or not) equipped with a rectangular structure.
The only rectangular structures on quadrilaterals are rectangles, while rectangular structures
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Fig. 11 Some examples of rectangular structures on the punctured triangle

a

a

1

1

x1 x2

x0

x3

x0

x1 x2

x3

Φa

Fig. 12 A surgery which turns Φa into an L-shape with a horizontal side folded in two

on pentagons are L-shapes by Lemma 2. Since two of the marked points of Y must match
after folding a horizontal side, one of them must be folded exactly in two. In the case of a
non-degenerate L-shape, the folded side must be the top or bottom one, as the inward corner
is not marked (Fig. 11). ��

4.5 Symmetric geodesics

The exact same argument as in Lemma 6 applies to the current situation: T ( ) is foliated
by geodesics symmetric about γ1. Moreover, the symmetric geodesics can be described
explicitly.

Given a ∈ (0, 1), let Φa be the convex hull of the points 0, 1, 1 + ia, a + i and i in
C with the side [1 + ia, a + i] glued to itself via the central symmetry at its midpoint.
The resulting object is a quadratic differential on a punctured triangle Xa ∈ T ( ) with
marked points x0 = 1

2 (1 + a)(1 + i), x1 = 0, x2 = 1 and x3 = i . A simple cut-and-paste
procedure transforms Φa into an L-shape with a horizontal side folded in two (see Fig. 12).
The advantage of the above representation is that it is symmetric with respect to the reflection
R in the line y = x , which realizes the permutation σ1 on the marked points. This implies
that Xa ∈ γ1 and that the geodesic ηa = {gtΦa | t ∈ R} is symmetric about γ1. Observe
that the horizontal and vertical foliations of Φa are equal to aα3 + 1−a

2 β2 and aα2 + 1−a
2 β3

respectively.

Proposition 4 Any geodesic symmetric about γ1 in T ( ) is equal to ηa for a unique a > 0.
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b a

α1

α1

Fig. 13 If a < b, there is a conformal embedding Φb → Φa which sends all arcs homotopic to α1 on Φb to
arcs homotopic to α1 on Φa

Proof Any geodesic symmetric about γ1 intersects γ1 at some point x . Moreover, there is
a unique geodesic symmetric about γ1 through x . Thus we have to show that one of the
geodesics ηa passes through x . In other words, we have to show that the map a → Φa is a
bijection from (0, 1) to γ1.

Any point on γ1 can be represented as a rectangle of unit area with vertical sides [x1, x ′
1]

and [x2, x3], with x0 the midpoint of [x1, x ′
1] and that side folded in two. This rectangular

structure is the Jenkins–Strebel differential for α1 at the corresponding point. In particular,
the map

γ1(t) �→ EL(α1, γ1(t)) = c0e−2t

is a bijection. Therefore, it suffices to prove that the map a �→ EL(α1, Φa) is a bijection.
If a < b, then there is a conformal embedding Φb ↪→ Φa obtained by applying a

homothety of factor 1+a
1+b centered at 0 (Fig. 13). This conformal embedding sends xb

0 to xa
0

and maps the sides [xb
1 , xb

2 ] and [xb
1 , xb

3 ] into the corresponding sides of Φa . Thus every arc
homotopic to α1 in Φb maps to an arc homotopic to α1 in Φa . By monotonicity of extremal
length under conformal embeddings, we have EL(α1, Φa) < EL(α1, Φb) so that the above
map is injective. It remains to prove surjectivity.

Given a ∈ (0, 1), consider the quarter annulus

Aa = { z ∈ C : 1 − a < |z − (1 + i)| < 1 } ∩ Φa .

Every arc homotopic to α1 in Φa has to cross Aa twice (see Fig. 14). Thus

EL(α1, Φa) > 22 EL(across Aa) = 4 log(1/(1 − a))

π/2

tends to +∞ as a → 1.
Next consider

Ba =
{

z ∈ C : a
√
2 < |z − (1 + a)| < a

√
2 + (1 − a)√

2

}
∩ Φa

and its mirror image R(Ba) about the diagonal y = x (see Fig. 14). These two annuli sectors
glue together to form a quarter annulus Ca = Ba ∪ R(Ba) in Φa . Every concentric circular
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1

a

Aa

1 − a

Ba

R(Ba)

a

a
√

2

1−a√
2

Fig. 14 The sectors of annuli used to bound EL(α1, Φa)

arc in Ca is homotopic to α1 so that

EL(α1, Φa) < EL(around Ca) = π/2

log
(
1 + 1−a

2a

)
tends to 0 as a → 0. By continuity, EL(α1, Φa) achieves every positive value. ��

Let Ua be the closed half-plane bounded by ηa which contains the origin and let

Qa =
3⋂

j=1

σ j (Ua).

It follows from the proof of Proposition 4 that Ua ⊃ Ub and hence Qa ⊃ Qb if 0 < a < b,
provided that b is small enough (when b passes the value a0 for which Φa0 coincides with
the origin, the orientation of the half-plane Ub changes). Moreover,

T ( ) =
⋃

a∈(0,1)

Qa

since the geodesics ηa foliate the space. By construction, Qa is convex and has D3 symmetry.
It remains to prove that Qa is compact, i.e., that ηa intersects γ3.

4.6 Equal extremal lengths implies symmetry

We characterize the geodesic γ3 in terms of equality of extremal lengths.

Lemma 16 Let X ∈ T ( ). The following are equivalent:

– X belongs to γ3;
– EL(α1, X) = EL(α2, X);
– EL(β1, X) = EL(β2, X).

Proof Suppose that X ∈ γ3. Then there is an anti-conformal involution of X realizing the
permutation σ3 = (12) on the marked points. Since σ3(α1) = α2, σ3(β1) = β2 and extremal
length is invariant under anti-conformal diffeomorphisms, we have EL(α1, X) = EL(α2, X)

and EL(β1, X) = EL(β2, X).
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Next, we show that if X is not on γ3, then the extremal lengths of α1 and α2 are different,
and similarly for β1 and β2. To see this, map X conformally onto the unit disk is such a
way that x0 = 0. Let L be the perpendicular bisector of the chord [x1, x2] and let RL be
the reflection in that line. Since X /∈ γ3, the point x3 does not lie on L . Suppose that x3 is
closer to x1 than x2. Then the embedded rectangle U of smallest extremal length homotopic
to α1 maps under RL to a rectangle of the same extremal length homotopic to α2. Moreover,
RL(U ) is not extremal for α2 because its side contained in the circular arc from x2 to x3 is
properly contained in that arc. Thus

EL(α1, X) = EL(U ) = EL(RL(U )) > EL(α2, X).

Similarly, the embedded rectangle V of smallest extremal length homotopic to β2 maps under
RL to a rectangle homotopic to β1 which is not extremal, so that

EL(β2, X) = EL(V ) = EL(RL(V )) > EL(β1, X).

If x2 is closer to x3 instead, the inequalities are reversed. ��
Of course, the statement still holds if the indices 1, 2 and 3 are permuted arbitrarily.

4.7 Extremal length estimates

We are ready to prove that the geodesics ηa and γ3 intersect if a is small enough.

Proposition 5 If a ∈
(
0, 1

2eπ/2−1

)
, then ηa intersects γ3. More precisely, gtΦa belongs to

γ3 for some t ∈ [
0, 1

2 log
1
a

]
.

There are four inequalities to prove.

Lemma 17 For every a ∈ (0, 1), we have

EL(α1, Φa) ≤ π/2

log
(
1 + 1−a

2a

) .

Proof See the proof of Proposition 4. ��
Lemma 18 For every a ∈ (0, 1), we have

EL(α2, Φa) ≥ 2

π
log

(
1 + 1 − a

2a

)
.

Proof Every representative of α2 intersects every representative of α1 at least once. Thus
every representative of α2 has to cross the quarter annulus Ca defined in the proof of Propo-
sition 4. Hence

EL(α2, Φa) ≥ EL(across Ca) = log
(
1 + 1−a

2a

)
π/2

by monotonicity of extremal length. ��
Remark 4 The inequality at the end of the above proof can be seen as a special case of the
inequality

EL(F, X)EL(G, X) ≥ i(F, G)2

due to Minsky [21]. This inequality is true for surfaces with boundary and marked points;
the proof applies without change. Alternatively, it follows by doubling, since extremal length
and intersection numbers are multiplied by 2 upon doubling the surface.
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The next corollary follows immediately.

Corollary 6 If a ∈
(
0, 1

2eπ/2−1

)
, then EL(α1, Φa) ≤ EL(α2, Φa).

We then show that the reverse inequality holds for t large enough.

Lemma 19 For every a ∈ (0, 1) and t ∈ R we have

EL(α1, gtΦa) ≥ e2t a.

Proof Every arc homotopic to α1 in gtΦa has to cross the rectangle [0, et a] × [0, e−t ]
horizontally, so the extremal length of α1 is at least the extremal length of that rectangle. ��
Lemma 20 For every a ∈ (0, 1) and t ∈ R we have

EL(α2, gtΦa) ≤ 1

e2t a
.

Proof The vertical segments in [0, et a]×[0, e−t ] are homotopic to α2 so the extremal length
of α2 is bounded above by the (vertical) extremal length of that rectangle. ��

We get obtain the following as a consequence.

Corollary 7 If a ∈ (0, 1) and t ≥ 1
2 log

1
a , then EL(α1, gtΦa) ≥ EL(α2, gtΦa).

In turn, the two corollaries imply that ηa intersects γ3.

Proof of Proposition 5 If a ∈
(
0, 1

2eπ/2−1

)
then EL(α1, gtΦa) ≤ EL(α2, gtΦa) at t = 0,

while the inequality is reversed at t = 1
2 log

1
a . By the intermediate value theorem, the equality

EL(α1, gtΦa) = EL(α2, gtΦa) occurs for some t ∈ [
0, 1

2 log
1
a

]
. By Lemma 16, equality of

extremal lengths implies gtΦa ∈ γ3. ��
Since ηa intersects γ3, it also intersects σ3(ηa) at the same point. By applying σ1, we see

that σ1(ηa) = ηa intersects σ1σ3(ηa) = σ1σ3σ1(ηa) = σ2(ηa). Similarly, σ2(ηa) and σ3(ηa)

intersect. Thus the intersection Qa of the corresponding half-planes Ua , σ2(Ua) and σ3(U2)

containing the origin is a geodesic triangle. This, together with the remarks at the end of
Sect. 4.5, completes the proof of Theorem 2.

4.8 Hexagons in the space of punctured triangles

It turns out that the triangles Qa are bad for estimating the divergence between geodesics in
T ( ). Indeed, one can check that the inner radius of Qa is of order of log log 1

a while its outer
radius and perimeter are of order log 1

a . Following the same argument as for T ( ) would
only yield that the divergence is at most exponential. But the divergence is not exponential;
the triangles ∂ Qa are simply inefficient paths. We replace them by more efficient hexagons.

Given a > 0, let Ψa be the rectangular structure on with horizontal foliation aα1 + β2

and vertical foliation aβ3 +α2. We can obtain Ψa by taking the L-shape [0, 1]× [0, 1+ a] ∪
[1, 2(1 + a)] × [0, 1], folding the bottom side [0, 2(1 + a)] × {0} in two, and labelling the
vertices appropriately (see Fig. 15).

Let νa = {gtΨa | t ∈ R} be the Teichmüller geodesic cotangent to Ψa . We will show that
νa intersects γ1 and γ3.

Proposition 6 If a ≥ 2, then νa intersects γ1 and γ3. More precisely, gtΨa belongs to γ1 for
some t between − 1

2 log(2(1 + a)) and 0, and gtΨa belongs to γ3 for some t between 0 and
1
2 log(2(1 + a)).
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a

2a + 1 x1

x2x3

1

α1

β2

1

β3

α2

1 a a 1x0

Fig. 15 The rectangular structure Ψa on with horizontal foliation aα1 +β2 and vertical foliation aβ3 +α2

The idea is again to estimate various extremal lengths.

Lemma 21 If a ≥ 1, then EL(β3, Ψa) ≤ EL(β2, Ψa).

Proof There is an a × 2 rectangle embedded in Ψa whose vertical segments are homotopic
to β3. By the second definition of extremal length we have

EL(β3, Ψa) ≤ 2

a
.

The Euclidean metric on Ψa has area 2 + 3a < 3(1 + a) while any representative of β2 has
length at least 2(1 + a). By the first definition of extremal length we have

EL(β2, Ψa) ≥ (2(1 + a))2

2 + 3a
>

4

3
(1 + a).

Moreover, if a ≥ 1, then
2

a
≤ 2 <

8

3
≤ 4

3
(1 + a).

��
Lemma 22 If a > 0 and t ≤ − 1

2 log(2(1 + a)), then

EL(β3, gtΨa) ≥ EL(β2, gtΨa).

Proof Let K = e2t . The Euclidean metric on gtΨa has area 2+ 3a while any representative
of β3 has length at least 2/

√
K . This yields

EL(β3, gtΨa) ≥ 4

K (2 + 3a)
≥ 4e−2t

3(1 + a)
≥ 8

3
.

On the other hand, there is a 2(1 + a)
√

K by 1/
√

K rectangle homotopic to β2 in gtΨa

so that

EL(β2, gtΨa) ≤ 2(1 + a)K = 2(1 + a)e2t ≤ 1 <
8

3
≤ EL(β3, gtΨa).

��
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Corollary 8 If a ≥ 1, then gtΨa ∈ γ1 for some t ∈ [− 1
2 log(2(1 + a)), 0

]
.

Proof It follows from the previous two lemmata and the intermediate value theorem that
EL(β2, gtΨa) = EL(β3, gtΨa) for some t ∈ [− 1

2 log(2(1 + a)), 0
]
. This equality implies

that gtΨa ∈ γ1 by Lemma 16. ��

Lemma 23 If a ≥ 2, then EL(α1, Ψa) ≤ EL(α2, Ψa).

Proof There is a 1 × a rectangle homotopic to α1 so that EL(α1, Ψa) ≤ 1/a < 1. Also,
the Euclidean metric on Ψa is such that every arc homotopic to α2 has length at least 2 + a.
Hence we have

EL(α2, Ψa) ≥ (2 + a)2

2 + 3a
≥ 1 + a

3
≥ 1 > EL(α1, Ψa).

��

Lemma 24 If a ≥ 2 and t ≥ 1
2 log(2(1 + a)), then

EL(α1, gtΨa) ≥ EL(α2, gtΨa).

Proof Let K = e2t . In the Euclidean metric on gtΨa , every arc homotopic to α1 has length
at least

√
K so that

EL(α1, gtΨa) ≥ K

2 + 3a
≥ 2(1 + a)

2 + 3a
≥ 2

3
.

Moreover, there is a
√

K by (2+ a)/
√

K rectangle homotopic to α2 in gtΨa , which implies

EL(α2, gtΨa) ≤ (2 + a)

K
= (2 + a)

e2t
≤ 2 + a

2(1 + a)
≤ 2

3
≤ EL(α1, gtΨa).

��

Corollary 9 If a ≥ 2, then gtΨa ∈ γ3 for some t ∈ [
0, 1

2 log(2(1 + a))
]
.

Proof The last two lemmata and the intermediate value theorem imply that

EL(α1, gtΨa) = EL(α2, gtΨa)

for some t ∈ [
0, 1

2 log(2(1 + a))
]
. In turn, equality of extremal lengths implies that gtΨa

belongs to γ3 by Lemma 16. ��

This finishes the proof of Proposition 6. Let Ia be the segment of νa between γ1 and γ3,
and let Ja be the geodesic hexagon obtained by successively reflecting Ia across the axes of
symmetry of T ( ):

Ja = σ2σ1(Ia) ∪ σ1(Ia) ∪ Ia ∪ σ3(Ia) ∪ σ2σ3(Ia) ∪ σ1σ2σ3(Ia).

Then Ja is a closed curve of length at most 6 log(2(1 + a)) since Ia has length at most
log(2(1 + a)).
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4.9 Inner and outer radii

We now estimate the inner and outer radii of the hexagon Ja .

Lemma 25 There exists a constant C1 > 0 such that for every a ≥ 2, the hexagon Ja is
disjoint from the ball of radius 1

2 log a − C1 centered at the origin.

Proof Denote the origin of T ( ) by X0. It suffices to show that

d(X0, gtΦa) ≥ 1

2
log a − C1

whenever |t | ≤ 1
2 log(2(1 + a)).

Let K = e2t . In the Euclidean metric on gtΨa (which has area 3a + 2 ≤ 4a), every
representative of α3 has length at least

(2a + 1)
√

K + a√
K

≥ a

(√
K + 1√

K

)
.

Thus

EL(α3, gtΨa) ≥ 1

3a + 2

(
(2a + 1)

√
K + a√

K

)2

≥ a

4

(√
K + 1√

K

)2

≥ a.

By Kerckhoff’s formula we have

d(X0, gtΨa) ≥ 1

2
log

EL(α3, gtΨa)

EL(α3, X0)
≥ 1

2
log a − 1

2
log EL(α3, X0).

Since the last term on the right is a constant, the result follows. ��
Lemma 26 There exists a constant C2 > 0 such that for every a ≥ 2, the hexagon Ja is
contained in the ball of radius log a + C2 centered at the origin.

Proof Denote the origin of T ( ) by X0. It suffices to prove that the segment Ia is contained
in the ball, i.e., that d(X0, gtΨa) ≤ log a + C2 whenever |t | ≤ 1

2 log(2(1 + a)).
For every a ≥ 1, there is a piecewise linear map f : Ψ1 → Ψa obtained by stretching the

top leg of Ψa vertically by a and stretching the subrectangle [1, 3] × [0, 1] of the right leg
horizontally by a. The homeomorphism f is a-quasiconformal so that d(Ψ1, Ψa) ≤ 1

2 log a.
The triangle inequality yields the inequality

d(X0, gtΨa) ≤ d(X0, Ψ1) + d(Ψ1, Ψa) + d(Ψa, gtΨa).

The first term on the right-hand side is a constant, the second term is bounded by 1
2 log a and

the last term is equal to |t |, which is at most

1

2
log(2(1 + a)) ≤ 1

2
log(3a) = 1

2
log a + 1

2
log 3.

��
Corollary 10 There exits a constant C3 > 0 such that for every t > C3, the hexagon Ja

with a = e8t/3 is disjoint from the ball of radius t around the origin and is contained in the
ball of radius 3t around the origin.

Proof See the proof of Corollary 4 ��
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4.10 Linear divergence

Since the hexagons Ja have comparable inner radius, outer radius, and perimeter, it follows
that geodesic rays from the origin in T ( ) diverge at most linearly.

Proposition 7 There exists a constant C > 0 such that for any two geodesic rays η and ν

starting from the origin in T ( ) and any t > 0 we have

div(η, ν, t) ≤ 12t + C.

Proof See the proof of Proposition 3. We obtain a better constant here because the half-
perimeter of the hexagon Ja with a = e8t/3 is at most

3 log(2(1 + a)) ≤ 3 log 3a = 8t + 3 log 3.

to which we need to add at most 2t + 2t = 4t for joining η(t) and ν(t) to Ja . ��
By the triangle inequality, the divergence from any other point is at most linear as well.

Corollary 11 For any p ∈ T ( ), there exists a constant D > 0 such that for any geodesic
rays η and ν from p and any t > 0 we have div(η, ν, t) ≤ 12t + D.

This completes the proof of Theorem 3.

5 Universality

In this section, we briefly describe T ( ), the Teichmüller space of the hexagon. We also
prove Theorem 4 which states that T ( ) and T ( ) both embed isometrically in T ( ) and
that the latter embeds isometrically in the Teichmüller space of any closed surface of genus
at least 2.

TheTeichmüller spaceT ( ) is defined analogously as forT ( ). Its points are equivalence
classes of bordered Riemann surfaces homeomorphic to the closed disk, with 6marked points
labelled in counterclockwise order along the boundary.

The dihedral group D6 ∼= D3 ×Z2 acts isometrically on T ( ) by permuting the labels of
the marked points and reversing the orientation when needed. If we take our base topological
surface to be a regular hexagon inR2, then D6 acts on it by isometries. The quotient of by
any of the three reflections about lines throughmidpoints of opposite edges is a pentagon (the
endpoints of the axis of reflection are critical points, hence their images have to be marked in
the quotient). Each of these quotient maps is an admissible orbifold covering → which
gives rise to an isometric embedding T ( ) ↪→ T ( ) according to Theorem 5.

Note that the three copies ofT ( ) obtained in thisway all intersect along a single geodesic.
Indeed, if an hexagon X ∈ T ( ) has two symmetries, it automatically has a third one. For
example, if X admits anti-conformal involutions acting as σ = (12)(36)(45) and τ =
(23)(14)(56) on the vertices, then it admits an anti-conformal involution acting as στσ =
(34)(25)(16).

Similarly, there is a degree 2 branched cover → which we can view as the quotient
of by the central symmetry about its center. This orbifold covering induces an isometric
embedding T ( ) ↪→ T ( ). Each of the three copies of T ( ) in T ( ) intersects the image
of T ( ) along a geodesic. Indeed, these three geodesics arise by taking the quotient of
by Z2 × Z2 groups, each generated by a side-to-side reflection together with the central
symmetry. The quotient is a quadrilateral, whose Teichmüller space is isometric to R. These
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T ( )

T ( )

Fig. 16 Orbifold coverings → and → and a sketch of how the resulting copies of T ( ) and
T ( ) sit inside T ( )

three geodesics of intersection correspond to the three axes of symmetry in T ( ). See Fig. 16
for a sketch of how these four planes sit inside T ( ).

Each point in T ( ) can be represented as the closed upper half-plane H ∪ {∞} with
marked points x1, x2, x3, ∞, − 1 and 0, where 0 < x1 < x2 < x3. With this normalization,
the coordinate

(log(x1), log(x2 − x1), log(x3 − x2))

provides a homeomorphism between T ( ) and R
3. Recall that each of the three copies of

T ( ) and the copy of T ( ) in T ( ) is the locus of fixed points of some involution in
D6. From this we find that they satisfy algebraic equations in the normalized coordinates
(x1, x2, x3,∞,− 1, 0):

– Fix((12)(36)(45)) ∼= T ( ) has equation x3 + 1 = (x1 + 1)(x2 + 1);
– Fix((23)(14)(56)) ∼= T ( ) has equation x1(x1 + 1) = (x2 − x1)(x3 − x1);
– Fix((34)(25)(16)) ∼= T ( ) has equation x3(x3 − x1) = (x3 − x2)(x3 + 1);
– Fix((34)(25)(16)) ∼= T ( ) has equation

( x3
2

)2 −
( x3
2

− x1
)2 =

(
x2 + 1

2

)2

−
(

x1 − x2 − 1

2

)2

.

The regular hexagon corresponds to (x1, x2, x3) = (1/2, 1, 2). See Fig. 17 for a plot of part
of these planes in log-coordinates.

In an earlier version of this paper, we had conjectured that each of the four planes above
was part of a foliation of T ( ) by totally geodesic planes2 with the same symmetries. Further
numerical testing indicates this is not the case.

Question 1 Are there any other totally geodesic planes in T ( ) besides the above four?

A result ofWright [26] suggests that the answer might be no. IfΣ is closed, then T (Σ, P)

contains at most finitely many submanifolds M of dimension at least 2 over C that contain
the Teichmüller disk through any two of their points, up to the action of the mapping class
group. This does not say anything about totally geodesic submanifolds of T ( ), but it would
not be too surprising if very few of them existed. In conclusion, the proof of Corollary 1 is
unlikely to extend to T ( ).

2 A set is totally geodesic if it contains the bi-infinite geodesic through any two of its points.
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Fig. 17 A plot of the three
copies of T ( ) and the copy of
T ( ) inside T ( )

Fig. 18 Orbifold coverings Σ2 → and Σg → Σ2 for g ≥ 2

Back to the proof of Theorem 4. We claim that there is an isometric embedding T ( ) ↪→
T (Σ2)whereΣ2 is the closed surface of genus 2. To see this, it suffices to give an admissible
orbifold covering Σ2 → . There are at least two distinct such coverings. First quotient Σ2

by the hyper-elliptic involution to obtain a sphere with 6 marked points, then quotient the
sphere by an orientation-reversing involution fixing the 6marked points to obtain the hexagon.
Another orbifold covering is obtained as follows. First double across 3 non-adjacent sides
to get a pair of pants, then double the pair of pants across its boundary to obtain a genus 2
surface. Reversing this process gives an orbifold coveringΣ2 → . Finally, it is well-known
that there is a covering map Σg → Σ2 for every g ≥ 2, so that T (Σ2) embeds isometrically
into T (Σg) for every g ≥ 2 (see Fig. 18).
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