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Abstract

We study a mean change point testing problem for high-dimensional data, with exponentially-
or polynomially-decaying tails. In each case, depending on the ℓ0-norm of the mean change
vector, we separately consider dense and sparse regimes. We characterise the boundary between
the dense and sparse regimes under the above two tail conditions for the first time in the change
point literature and propose novel testing procedures that attain optimal rates in each of the
four regimes up to a poly-iterated logarithmic factor. By comparing with previous results under
Gaussian assumptions, our results quantify the costs of heavy-tailedness on the fundamental
difficulty of change point testing problems for high-dimensional data.

To be specific, when the error vectors follow sub-Weibull distributions, a CUSUM-type statis-
tic is shown to achieve a minimax testing rate up to

√
log log(8n). When the error distributions

have polynomially-decaying tails, admitting bounded α-th moments for some α ≥ 4, we introduce
a median-of-means-type test statistic that achieves a near-optimal testing rate in both dense and
sparse regimes. In particular, in the sparse regime, we further propose a computationally-efficient
test to achieve the exact optimality. Surprisingly, our investigation in the even more challenging
case of 2 ≤ α < 4, unveils a new phenomenon that the minimax testing rate has no sparse
regime, i.e. testing sparse changes is information-theoretically as hard as testing dense changes.
This phenomenon implies a phase transition of the minimax testing rates at α = 4.

1 Introduction

In this paper, we study the single change point testing problem when the observations are corrupted
by heavy-tailed errors. To be specific, consider the ‘signal plus noise’ model

X = θ + E, (1)

where X, θ and E are all p × n matrices, and the entries of E are independent random variables
with zero mean and unit variance. We denote the distribution of E as Pe ∈ Q. We are interested in
understanding the fundamental difficulty of testing whether the columns of θ undergo a change at
some unknown location when the class Q contains heavy-tailed distributions. By writing θt as the
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t-th column of θ, our goal can be formalised as testing

H0 : θ ∈ Θ0(p, n) vs. H1 : θ ∈ Θ(p, n, s, ρ) :=

n−1⋃
t0=1

Θ(t0)(p, n, s, ρ), (2)

where

Θ0(p, n) := {θ : θt = µ for all t = 1, 2, . . . , n, for some µ ∈ Rp}

and

Θ(t0)(p, n, s, ρ) :=

{
θ : θt = µ1 for t = 1, . . . , t0, θt = µ2 for t = t0 + 1, . . . , n,

for some µ1, µ2 ∈ Rp s.t. ∥µ1 − µ2∥0 ≤ s,
t0(n− t0)

n
∥µ1 − µ2∥22 ≥ ρ2

}
.

To put it in words, we use Θ0(p, n) to denote the space of signals without a change point, and
Θ(t0)(p, n, s, ρ) to denote the space of signals with a change at location t0 of entry-wise sparsity
level s and (normalised) signal strength ρ. The multiplicative factor t0(n − t0)n

−1 of ∥µ1 − µ2∥22
can be regarded as the effective sample size of the problem. It reflects the fact that the difficulty of
testing change point is related to where the change happens.

Change point analysis as a broad topic has received increasing attention in recent years. Various
models (e.g. Wang and Samworth, 2018; Verzelen et al., 2020; Liu et al., 2021; Wang et al., 2021;
Wang and Zhao, 2022; Xu et al., 2022) are considered in the literature focusing on different tasks,
including testing the existence of change points, estimating their locations and quantifying the
uncertainty of the proposed estimators. From a theoretical point of view, many of the problems
studied are shown to exhibit a phase transition phenomenon, i.e. a change point can only be reliably
tested or accurately localised when its signal strength, measured in some problem-dependent way,
exceeds some threshold. It is, therefore, crucial to understand the boundary of this phase transition
behaviour. For the testing problem that we are concerned with here, the key quantity is the minimax
testing rate, v∗Q(p, n, s), defined below. For a given θ and E ∼ Pe, we write Pθ,Pe the probability
measure of the data X generated from (1) and Eθ,Pe the corresponding expectation operator.

Definition 1 (Minimax testing rate). Let Φ denote the set of all measurable test functions ϕ :
Rp×n → {0, 1}. Consider the minimax testing error

RQ(ρ) := inf
ϕ∈Φ

{
sup
Pe∈Q

sup
θ∈Θ0(p,n)

Eθ,Pe(ϕ) + sup
Pe∈Q

sup
θ∈Θ(p,n,s,ρ)

Eθ,Pe(1− ϕ)

}
.

For a fixed ε ∈ (0, 1/2), we say that v∗Q(p, n, s) is the minimax testing rate if RQ(ρ) ≤ ε when
ρ2 ≥ Cv∗Q(p, n, s), and RQ(ρ) ≥ 1/2 when ρ2 ≤ cv∗Q(p, n, s), where c, C > 0 are constants depending
only on ε and Q.

We note that in Definition 1, C is allowed to depend on ε. Since the primary goal of the paper
is to characterise the minimal size of the signal, in terms of various model parameters, where the
testing problem starts to become feasible, we will treat ε as an absolute constant throughout the
rest of the paper.

A minimax testing rate is previously studied in Liu et al. (2021) under model (1), where the
entries of noise matrix E are assumed to be independent standard normal random variables. It is
shown that

v∗N⊗(0,1)(p, n, s) =
{√

p log log(8n) ∧
(
s log

(
ep log log(8n)s−2

))}
∨ log log(8n), (3)
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where N⊗(0, 1) denotes the joint distribution of all pn independent N(0, 1) entries in E. Our main
contribution, presented in Section 1.1, is to characterise the impact of heavy-tailed distributions on
the minimax testing rate. More specifically, we consider two classes of error distributions.

Definition 2 (Gα,K class of distributions). For K > 0 and α ∈ (0, 2], let Gα,K denote the class of
distributions on R such that for any P ∈ Gα,K and random variable W ∼ P , it holds that

E(W ) = 0, E(W 2) = 1 and E
(
exp
{
|W/K|α

})
≤ 2. (4)

The Gα,K class consists of sub-Weibull distributions of order α with mean 0, variance 1 and the
Orlicz ψα-norm upper bounded by K (see Definitions 4 and 5). By Proposition 12(a), they possess
exponentially-decaying tails, as P(|W | ≥ x) ≤ 2e−(x/K)α .

Definition 3 (Pα,K class of distributions). For K > 0 and α ≥ 2, let Pα,K denote the class of
distributions on R such that for any P ∈ Pα,K and random variable W ∼ P , it holds that

E(W ) = 0, E(W 2) = 1 and E
(
|W/K|α

)
≤ 1. (5)

In words, each distribution within this class has its α-th moment bounded above by Kα < ∞
and possesses a polynomially-decaying tail. This is typically much heavier than an exponentially-
decaying tail and thus poses a much bigger statistical challenge.

We study the minimax rate of testing v∗Q(p, n, s) defined in Definition 1 for Q = G⊗
α,K and

Q = P⊗
α,K , respectively, where G⊗

α,K and P⊗
α,K denote the class of joint distributions of all the entries

in the error matrix E ∈ Rp×n (or simply the class of distributions of E) when each entry of E
independently follows a distribution on R that belongs to the class Gα,K and Pα,K , respectively.
Throughout the paper, we treat K and α as absolute constants.

1.1 Main results

Our main results are summarised in Figure 1 and Table 1. As shown in Figure 1, when Pe ∈
P⊗
α,K , the minimax testing rate transition boundary between dense and sparse regimes occurs at

s∗P = p1/2−1/(α−2) when α ≥ 4. When α ∈ [2, 4), there is essentially no sparse regime, i.e. testing
sparse change is information-theoretically as hard as testing dense changes. When Pe ∈ G⊗

α,K , the

transition boundary takes a simpler form of s∗G =
√
p log−2/α(ep) for α ∈ (0, 2]. The corresponding

upper and lower bounds on the minimax testing rates v∗P⊗
α,K

(p, n, s) and v∗G⊗
α,K

(p, n, s) are detailed in

Table 1. The correspondence between each term in the table and its associated result are detailed
in Section 1.3. Note that under both classes of distributions, we achieve matching upper and lower
bounds under the aforementioned sparse regimes. For the dense regimes, we characterise the minimax
testing rates up to

√
log log(8n) in the case of G⊗

α,K and up to log log(8n) in the case of P⊗
α,K . We

provide thorough discussions on these gaps in Sections 2.3 and 3.3.
Compared to previous works on robust mean change point testing problems (e.g. Yu and Chen,

2022; Jiang et al., 2023), where change point locations are required to be comparable to the length of
time series in order to achieve near-optimal guarantees, we consider a more general parameter space,
where the change point locations may be arbitrarily close to the boundary. Compared to recent
works on optimal mean change point testing problems without robustness (e.g. Liu et al., 2021), our
results allow for much more general classes of distributions and quantify the costs of heavy-tailedness.
Finally, compared to relevant latest works on robustness (e.g. Comminges et al., 2021), we investigate
the more challenging case that α ∈ [2, 4], under the finite moment noise assumption, and unveil a
new phase transition phenomenon that was previously unknown even in sequence models. More
in-depth discussions on these works can be found in Section 1.2.
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Figure 1: Minimax testing rate transition boundaries between dense and sparse regimes when the
distribution of the error matrix belongs to P⊗

α,K (left panel) and G⊗
α,K (right panel). The testing

rates within each regime are detailed in Table 1. The left panel plots the curve γ(α) = (α−2)−1∧1/2
for α ∈ [2,∞), and the two regimes are separated by s∗P = p1/2−γ . The right panel plots the curve
β(α) = 2/α for α ∈ (0, 2], and the two regimes are separated by s∗G =

√
p log−β(ep).

Upper bound Lower bound

G⊗
α,K

Dense (i)
√
p log log(8n) + log log(8n) (ii)

√
p(log log(8n))ω1 + log log(8n)

Sparse (iii) s log2/α(ep/s) + log log(8n) (iv) s log2/α(ep/s) + log log(8n)

P⊗
α,K

Dense (v) p(2/α)∨(1/2) log log(8n) (vi) p(2/α)∨(1/2)
√

(log log(8n))ω2 + log log(8n)

Sparse (vii) s(p/s)2/α + log log(8n) (viii) s(p/s)2/α + log log(8n)

Table 1: Minimax testing rates up to log log(8n) for a single mean change, where ω1 =
1
{
s >

√
p log log(8n)

}
and ω2 = 1

{
s >

√
p log log(8n) and α ≥ 4}. The rows of G⊗

α,K and P⊗
α,K

correspond to the right and left panel of Figure 1, respectively.

1.2 Relation to existing literature

Many real world data such as financial returns and macroeconomic variables exhibit heavy-tail
phenomena, which often violate the convenient sub-Gaussian/exponential assumptions adopted by
data analysts. Statistical procedures that mitigate the effects of heavy-tailed and/or contaminated
data, therefore, have been sought after in practice, see Resnick (2007) for more in-depth discussions.
Recent years have witnessed a growing interest among statisticians in quantifying the cost, if there is
any, of heavy-tailedness on various statistical tasks. Notably, for the seemingly simple task of mean
estimation, a range of innovative and sophisticated robust estimators (e.g. Catoni, 2012; Devroye
et al., 2016; Lugosi and Mendelson, 2019a,b; Prasad et al., 2019; Depersin, 2020; Depersin and Lecué,
2022) are developed to achieve the same high probability upper bounds as in the Gaussian case, even
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if the data distribution is only assumed to have finite second moment. These results show that, in
terms of convergence rates, there is no fundamental cost of allowing for heavy-tailed distributions for
the task of mean estimation. With the success of mean estimation, a variety of statistical tasks are
considered in the literature with the goal of developing estimators with Gaussian-like performances
for heavy-tailed data, including regression (e.g. Fan et al., 2014; Lugosi and Mendelson, 2019a;
Sun et al., 2020), empirical risk minimisation (e.g. Lecué and Lerasle, 2020; Prasad et al., 2020),
matrix estimation (e.g. Minsker, 2018; Mendelson and Zhivotovskiy, 2020), among others. However,
literature regarding change point analysis under heavy-tailed errors has been scarce in general.

One line of recent works (e.g. Cho and Owens, 2022; Wang and Zhao, 2022; Xu et al., 2022) con-
sider change point models with exponentially-decaying heavy-tailed noise and study the performance
of non-robust algorithms that perform well under sub-Gaussian noise assumptions. Theoretical re-
sults therein all require stronger assumptions on the strength of change points compared to the
setting under sub-Gaussian assumptions. One motivation for our work is thus to investigate to what
extent ideas from robust statistics are useful in analysing change points within high-dimensional
heavy-tailed data streams.

Another line of attack develops algorithms with robust components for change point analysis. In
particular, in the univariate mean change setting, Fearnhead and Rigaill (2019) propose to swap the
commonly used ℓ2-loss with other loss functions, including the biweight and Huber loss functions to
enhance robustness against heavy-tailed errors in localising change points. Li and Yu (2021) deploy
a robust mean estimator with a scanning window idea to estimate multiple change point locations
under a more general Huber contamination framework. Their results show that, in terms of the
minimax detection boundary, there is essentially no cost of relaxing the sub-Gaussian assumption
to more flexible finite moment assumptions. Robust change point analysis methodologies have also
been proposed in other contexts including change point detection in stump models (Mukherjee
et al., 2022), high-dimensional linear models (Liu et al., 2022) and functional time series (Wegner
and Wendler, 2022), as well as detecting covariance changes (Ramsay and Chenouri, 2020) and
distributional changes (Chenouri et al., 2020). Another series of works focus on robust online change
point detection (e.g. Unnikrishnan et al., 2011; Cao and Xie, 2017; Molloy and Ford, 2017), which
is different from the offline version that we study here1.

Closer to our high-dimensional mean change point setting, Yu and Chen (2022) and Jiang et al.
(2023) both consider the testing problem (2) and propose robust methodology targeting at sparse and
dense changes, respectively. Yu and Chen (2022) formulate the problem as testing location parameter
change, which in contrast to our model, allows the noise distribution to have mean parameter being
infinite. Their methodology involves a U-statistic with an anti-symmetric and bounded kernel,
followed by an ℓ∞ aggregation. The power analysis of their proposed test (cf. Theorem 3.3 therein)
along with subsequent remarks provide finite sample results showing that their test is able to detect
the change point when it is sufficiently away from the boundary. In particular, their Remark 4
suggests that detection is only possible for local alternative when the change point location satisfies

t0 ∧ (n− t0) ≥ c
√
n log(np),

for some absolute constant c > 0. In comparison, our results hold for the parameter space Θ(p, n, s, ρ)
that covers all possible locations of change point. Moreover, as discussed in Remark 5 therein, their
procedure achieves the sparse regime rate in v∗N⊗(0,1)(p, n, s) up to a poly-logarithmic factor in n

and p only when t0 = cn for some fixed constant c ∈ (0, 1). Jiang et al. (2023) consider the

1In an online change point analysis problem, one monitors the change points while collecting data. In the offline
context, the change point analysis is conducted retrospectively.

5



same mean change point testing problem as ours but without sparsity constraints. They allow
a form of weak spatial dependence across coordinates and we discuss this aspect in Section 5.
In terms of methodology, they also utilise a robustified U-statistic and combine it with the self-
normalisation technique. They derive the limiting distributions of the proposed test under the
sequential asymptotics. It is discussed in Remark 2 therein that, asymptotically, their test achieves
the dense rate v∗N⊗(0,1)(p, n, p) up to a logarithmic factor in n, when the change point location

satisfies t0 = cn for some fixed constant c ∈ (0, 1).
In comparison to the results in Yu and Chen (2022) and Jiang et al. (2023), our results, as

summarised in Section 1.1, are non-asymptotic and reveal that when considering the whole parameter
space Θ(p, n, s, ρ), where the change point locations may be arbitrarily close to the boundary, the
fundamental difficulty of the testing problem changes drastically. In particular, the heavy-tailed
distributions manifest a strong impact on the minimax testing rates and one can no longer achieve
the Gaussian-like minimax testing rates, especially in the sparse regime. Moreover, our results are
generally sharper in the sense that we character the minimax testing rates up to a factor of at most
log log(8n).

Lastly, we mention two recent works – Comminges et al. (2021) and Liu et al. (2021) – that are
technically related to ours. Comminges et al. (2021) study the sparse sequence models where

Yi = θi + σξi, i = 1, . . . , p.

The noise random variables ξi are i.i.d. with some distribution belonging to either Gα,K or Pα,K , and
the signal θ is assumed to be ℓ0-sparse with sparsity s. They provide minimax rates for estimating
∥θ∥2 among other results (cf. Table 1 therein) under these two noise classes. Our results recover
theirs when n is of constant order and provide a link between these two problems, while significantly
generalising to the arbitrary n case. To achieve the minimax estimation rates, Comminges et al.
(2021) first estimate θ via a penalised least squares estimator θ̂ in the sparse regime, and use ∥θ̂∥2
as an estimator for ∥θ∥2. We adopt a different yet more intuitive hard-thresholding methodology in
extracting information from sparse changes. Moreover, their upper bound rate under Pα,K requires
the assumption of bounded fourth moments, i.e. α ≥ 4. We investigate the more challenging case
when α ∈ [2, 4) and unveil a previously unknown phase transition behaviour even when n is of
constant order.

Liu et al. (2021) study the same testing problem (2) as ours under the Gaussian noise assumption
while also considering spatial and temporal dependence. Their proposed testing procedure computes
CUSUM-type statistics (e.g. Page, 1955) at each location on a dyadic grid. This also serves as the
starting point of various procedures in our work. By comparing the results in Table 1 with the rate
v∗N⊗(0,1)(p, n, s) derived by Liu et al. (2021) under the Gaussianity assumption, we show that the

heavy-tailed errors mainly affect the difficulty of testing sparse changes, whereas in the P⊗
α,K case

with α ∈ [2, 4), the dense rate also changes dramatically. In the special case of p = s = 1, our
results (both upper and lower bounds in all cases) reduce to log log(8n), which is the same rate as
v∗N⊗(0,1)(1, n, 1). This shows that, in the univariate setting, there is no extra cost of allowing for
heavy-tailed errors in testing change point compared to Gaussian errors.

1.3 Outline

The rest of paper is organised as follows. In Section 2, we study the testing problem (2) under
sub-Weibull noise distributions, i.e. when Pe ∈ G⊗

α,K . We consider separately the dense and sparse
regimes in Sections 2.1 and 2.2. In particular, the rates (i) – (iv) of Table 1 are established in
Theorem 1, Proposition 2, Theorem 3 and Proposition 4, respectively. In Section 3, we consider the
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testing problem under finite moment assumptions on the noise distribution, i.e. when Pe ∈ P⊗
α,K . We

again consider separately the dense and sparse regimes in Sections 3.1 and 3.2. We prove the rates
(v) – (viii) of Table 1 in Theorem 5, Proposition 6, Theorem 9 and Proposition 10, respectively. The
upper bound rates in Tables 1, particularly those in the sparse regimes, are achieved by procedures
that require the knowledge of the sparsity parameter. We propose and study procedures that are
adaptive to the unknown sparsity level in Section 4. We conclude the paper with some discussions
on potential future directions in Section 5. Proofs of our main results are given in Appendix A, with
auxiliary results deferred to Appendix B.

1.4 Notation

We end this section by introducing some notation used throughout the paper. For d ∈ N∗, we
write [d] := {1, . . . , d}. Given a, b ∈ R, we denote a ∧ b := min(a, b) and a ∨ b := max(a, b). For a
set S, we use 1S and |S| to denote its indicator function and cardinality respectively. For a vector

v =
(
v(1), . . . , v(d)

)⊤ ∈ Rd, we define ∥v∥0 :=
∑d

i=1 1{v(i)̸=0}, ∥v∥2 :=
{∑d

i=1 v(i)
2
}1/2

and ∥v∥∞ :=

maxi∈[d] |v(i)|. For a matrix A = (Aij)i∈[d1],j∈[d2] =
(
Aj(i)

)
i∈[d1],j∈[d2] ∈ Rd1×d2 , we denote the Frobe-

nius norm ∥A∥F :=
{∑d1

i=1

∑d2
j=1A

2
ij

}1/2
, the operator norm ∥A∥2 := maxv∈Rd2 ,v ̸=0 ∥Av∥2/∥v∥2,

the two-to-infinity norm ∥A∥2→∞ := maxv∈Rd2 ,v ̸=0 ∥Av∥∞/∥v∥2 and the max norm ∥A∥max :=
maxi∈[d1],j∈[d2] |Aij |. We use Γ(·) to denote the gamma function. For two probability measures
P and Q on a measurable space (X ,A), we denote the total variation distance between them as
TV(P,Q) := supA∈A |P (A) − Q(A)|. If, in addition, P and Q are absolute continuous with re-
spect to some base measure λ, then we define the squared Hellinger distance between them as
H2(P,Q) :=

∫
X
(√

p(x) −
√
q(x)

)2
λ(dx), where p and q are the Radon–Nikodym derivatives of P

and Q with respect to λ respectively. Finally, when the distribution is clear from the context, we
use P, E and Var to denote probability, expectation and variance operators respectively.

2 Testing under sub-Weibull noise distribution

In this section, we consider the entries of the noise matrix E to be independent random variables
and each follows a distribution belonging to the class Gα,K , see Definition 2. For any measurable
test function ϕ : Rp×n → {0, 1} and ρ > 0, we write the worst case testing error when Pe ∈ G⊗

α,K as

RG(ρ, ϕ) = sup
Pe∈G⊗

α,K

sup
θ∈Θ0(p,n)

Eθ,Pe(ϕ) + sup
Pe∈G⊗

α,K

sup
θ∈Θ(p,n,s,ρ)

Eθ,Pe(1− ϕ).

In some slight abuse of notation, we use RG (resp. RP) in place of RG⊗
α,K

(resp. RP⊗
α,K

) in the rest

of this paper. Recall the minimax testing error, defined in Definition 1, as

RG(ρ) = inf
ϕ∈Φ

RG(ρ, ϕ).

We assume the sparsity level s to be known for now and defer the discussion of adaptive procedures to
Section 4. Given s, we separately consider the dense and sparse regimes as mentioned in Section 1.1.
Recall that the boundary between these two regimes is

s∗G =

√
p

log2/α(ep)
. (6)

The dense regime refers to the case s ≥ s∗G , while the sparse regime refers to the case s < s∗G . The
choice of this boundary is discussed at the end of this section.
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2.1 Dense regime

In the dense regime, we consider the testing procedure that is used in Liu et al. (2021). Consider
T =

{
1, 2, 4, . . . , 2⌊log2(n/2)⌋

}
and a CUSUM-type statistic

Yt :=

∑t
i=1Xi −

∑t
i=1Xn+1−i√

2t
.

We define our test as
ϕG,dense := 1{maxt∈T At>r}, (7)

where

At :=

p∑
j=1

{
Y 2
t (j)− 1

}
(8)

and r > 0 is the detection threshold specified in (9) below. Note that it suffices to test for change
point over the dyadic grid T since for any true change point location t0 ∈ [n−1] under the alternative,
there exists some t ∈ T such that t ≤ t0 ≤ 2t, which is at the optimal scale for testing the alternative
parameter space Θ(t0)(p, n, s, ρ). The logarithmic size of T is the main reason behind the appearance
of the log log(8n) terms in our bounds below. The following theorem establishes the theoretical
guarantee of the test ϕG,dense.

Theorem 1. Let 0 < α ≤ 2 and K > 0. For any ε ∈ (0, 1), there exist constants C1, C2 > 0
depending only on α, K and ε, such that the test ϕG,dense defined in (7) with

r = C1

(√
p log log(8n) + log log(8n)

)
(9)

satisfies
RG(ρ, ϕG,dense) ≤ ε,

as long as ρ2 ≥ C2v
U
G,dense, where

vUG,dense :=
√
p log log(8n) + log log(8n).

Note that this simple test actually achieves the same rate in the dense regime as v∗N⊗(0,1) defined

in (3), saving for a slightly different separation boundary (see Section 2.3), even though the noise
distributions possess heavier tails than Gaussian distribution. One key ingredient in successfully
showing that there is no cost of allowing sub-Weibull distributions in the dense regime, is a careful
analysis of the type-I error using Lemma 18 instead of a crude union bound.

Note also that the above result in fact holds for any known sparsity level s ∈ [p]. Combined with
the following proposition, we show that the test ϕG,dense in (7) is indeed minimax rate-optimal in
the dense regime when s ≥

√
p log log(8n) and up to

√
log log(8n) otherwise. We carefully discuss

this gap in Section 2.3.

Proposition 2. Let 0 < α ≤ 2, K ≥ Kα and s ≥ √
p log−2/α(ep) ∨ c, for some absolute constant

c > 0 and some constant Kα > 0 depending only on α. There exists some constant c′ > 0 depending
only on α and K, such that RG(ρ) ≥ 1/2 whenever ρ2 ≤ c′vLG,dense, where

vLG,dense :=
√
p(log log(8n))ω + log log(8n),

and ω = 1{
s≥
√
p log log(8n)

}.
8



In view of Theorem 1 and Proposition 2, we see that under Gα,K , the heaviness of the tail does
not impact the minimax testing rate in the dense regime (up to a possible iterated logarithmic
factor). However, the α parameter does influence the boundary between the sparse and the dense
regime. Specifically, as α decreases (i.e. the tail becomes heavier), the dense regime becomes larger,
as illustrated in the right panel of Figure 1.

2.2 Sparse regime

In the sparse regime, we consider a sampling-splitting testing procedure where, intuitively, we first
use half of the data to identify coordinates that exhibit strong signals of change, and then use the
other half to aggregate the selected ‘signal’ coordinates. Such a methodology is applicable for testing
potential change locations t ∈ T \ {1} and we deal with testing the special case of t = 1 separately.

To be specific, for t ∈ T \ {1}, we define a sample-splitting version of (8) as

Yt,1 :=

∑t/2
i=1X2i−1 −

∑t/2
i=1Xn+1−2i√

t
, Yt,2 :=

∑t/2
i=1X2i −

∑t/2
i=1Xn+2−2i√
t

, (10)

and consider the following test

ϕG,sparse := 1{maxt∈T \{1} At,a>r} ∨ 1{A1,a>r1}, (11)

where

At,a :=

{∑p
j=1

{
Y 2
t,1(j)− 1

}
1{|Yt,2(j)|≥a}, t ≥ 2,∑p

j=1

{
Y 2
t (j)− 1

}
1{|Yt(j)|≥a}, t = 1,

(12)

and a, r, r1 are parameters specified in (13). The following theorem establishes the theoretical guar-
antee of the test ϕG,sparse.

Theorem 3. Let 0 < α ≤ 2 and K > 0. For any ε ∈ (0, 1), there exist constants C1, C2, C3, C4 > 0
depending only on α, K and ε, such that the test ϕG,dense defined in (11) with

a = C1

(
log1/α(ep/s) + s−1/2 log1/2(log(8n))

)
,

r = C2

(√
s log log(8n) + log log(8n)

)
,

r1 = C3s log
2/α(ep/s),

(13)

satisfies
RG(ρ, ϕG,sparse) ≤ ε,

as long as ρ2 ≥ C4v
U
G,sparse, where

vUG,sparse := s log2/α(ep/s) + log log(8n).

The idea of selecting coordinates via hard-thresholding has been widely used and in particular, in
the change point context, e.g. considered by Liu et al. (2021) under the Gaussian noise assumption.
However, their test does not require sample-splitting due to the tractability of truncated non-central
chi-square distribution. Such property disappears even when moving from Gaussian noise assumption
to sub-Gaussian noise assumption and results in different rates in the sparse regime (see Section 7.1
in Pilliat et al., 2023). From a technical point of view, our use of sample-splitting prompts the
independence between the coordinate selection and ℓ2 aggregation, simplifying the analysis while
achieving the optimal testing rate. A test based on (12) but without using sample splitting can be
shown to have a slightly worse testing rate of s log2/α(ep/s) + log(es) log log(8n) with our current
proof technique.
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Proposition 4. Let 0 < α ≤ 2, K ≥ Kα and c ≤ s ≤ √
p log−2/α(ep), for some absolute constant

c > 0 and some constant Kα > 0 depending only on α. There exists some constant c′ > 0 depending
only on α and K, such that RG(ρ) ≥ 1/2 whenever ρ2 ≤ c′vLG,sparse, where

vLG,sparse := s log2/α(ep/s) + log log(8n).

The above proposition, combined with Theorem 3, shows that the test ϕG,sparse achieves the
minimax testing rate in the sparse regime as long as the sparsity level is larger than an absolute
constant, which arises as an artefact of our proof.

2.3 Discussion on the minimaxity gap

We conclude this section with some discussion on the gap between the upper bound rates vUG,dense,

vUG,sparse and the lower bound rates vLG,dense, v
L
G,sparse. Recall that each rate is a function of p, n and

s. A key observation is that Theorems 1 and 3 hold for any sparsity level s. In other words, for any
given s, we can simultaneously run the two testing procedures described in Sections 2.1 and 2.2 and
take ϕG,dense ∨ ϕG,sparse as our test. This leads to an upper bound

vUG,dense(p, n, s) ∧ vUG,sparse(p, n, s) (14)

on the minimax testing rate.
The separation boundary between dense and sparse regimes based on (14) is sG which satis-

fies vUG,dense(p, n, sG) = vUG,sparse(p, n, sG), i.e.
√
p log log(8n) = sG log

2/α(ep/sG). Define ζG(s) :=

s log2/α(e2/αp/s), which is increasing in s when 1 ≤ s ≤ p. Then sG is of the same order as
ζ−1
G (
√
p log log(8n)). This is a slightly different boundary from s∗G =

√
p log−2/α(ep) that we de-

fined in (6), which is of the same order as ζ−1
G (

√
p). Note that s∗G does not depend on the sam-

ple size n while sG does. Observe also that due to the monotonicity of s 7→ ζG(s) , we have
s∗G ≤ CαsG <

√
p log log(8n) for some constant Cα > 0 depending only on α.

In our sparse regime s < s∗G , the rate in (14) simply becomes vUG,sparse(p, n, s), and exactly

matches the lower bound vLG,sparse(p, n, s). In our dense regime, we first focus on the regime s ≥√
p log log(8n). The rate in (14) is now vUG,dense(p, n, s) and again matches the corresponding lower

bound vLG,dense(p, n, s). We remark that s ≥
√
p log log(8n) is in fact the ‘dense regime’ under

Gaussian noise assumption (Liu et al., 2021, Theorem 1).
The more intriguing region of the sparsity level is s∗G ≤ s <

√
p log log(8n), where we have used

the dense version of the test in Section 3.1 to achieve a rate of vUG,dense(p, n, s). Note that a gap of√
log log(8n) exists between vUG,dense(p, n, sG) and vLG,dense(p, n, sG). When s∗G ≤ s ≤ sG , we can use

the sparse version of test described in Section 2.2 to achieve the rate in (14), which provides a small
improvement over vUG,dense(p, n, s). In fact, any sparsity level between s∗G and

√
p log log(8n) can be

chosen to be the boundary between using the dense test (7) and using the sparse test (11) and leads
to an overall minimaxity gap of order

√
log log(8n). For ease of exposition, we have used s∗G as this

boundary, as it has a simple closed form expression depending only on p.
Lastly, we note that the gap discussed in the last paragraph even exists when each entry of the

noise matrix follows a sub-Gaussian distribution rather than a standard normal; see Pilliat et al.
(2023, Section 7.1), where it is suggested that a procedure that explores the exact distribution of
the noise may be able to further close this gap.

10



3 Testing under finite moment noise distribution

In this section, we consider the case when Pe ∈ P⊗
α,K , or equivalently, we assume that the distribution

of each entry in the noise matrix E has only finitely α-th moments, for some constant α ≥ 2, see
Definition 3. Compared to the Gα,K class of distributions that we considered in Section 2, the
Pα,K class of distributions include a much wider range of noise distributions, e.g. t distributions
and centred Pareto distributions. As a result, it poses a much large statistical challenge, and new
approaches to tackle the testing problem are required.

The results developed in Section 2 show that, when the noise distributions belong to the sub-
Weibull class, standard CUSUM-type testing procedure can already achieve near-optimal minimax
testing rate (up to

√
log log(8n)). Using more advanced tools from robust statistics is unlikely

to result in major improvement on the testing rate. However, when the error distribution has a
much heavier tail, i.e. only decays polynomially, which implies the existence of only finitely many
moments, the story is different. Using CUSUM-type statistics alone will not be enough to obtain
ideal performance due to a lack of sharp concentration in such settings. We therefore borrow wisdom
from robust statistics in pursuit of better concentration around true change point signals.

Similar to the sub-Weibull case, we write the worst case testing error asRP(ρ, ϕ) and the minimax
testing error as RP(ρ). Also, we assume the sparsity level to be known and consider the dense and
sparse cases separately as in Sections 1.1 and 2. The boundary between these two regimes is now

s∗P := p
1
2
−( 1

α−2
∧ 1

2
), (15)

and the dense regime refers to the case s ≥ s∗P , while the sparse regime refers to its complement.
The discussion on the boundary are left to Section 3.3. Notably, when α ∈ [2, 4], we always have

1

α− 2
∧ 1

2
=

1

2
,

which shows that there is no sparse regime in this extremely heavy-tailed setting.

3.1 Dense regime

We now describe our testing procedure for dense changes, building on the idea of median-of-means
in robust statistics literature. For i ≤ n/2, we denote Zi := (Xi −Xn−i+1)/

√
2. For t ∈ T , we split

{Z1, . . . , Zt} into Gt groups of equal size that

Zt,1,Zt,2, . . . ,Zt,Gt ,

where each group contains t/Gt ≥ 1 elements and the number of groups Gt is specified later in (18).
Note that our choice of Gt will guarantee that t/Gt is a positive integer. Set Vt,g ∈ Rp with

Vt,g(j) := Z
2
t,g(j)−

Gt
t
,

where Zt,g ∈ Rp is the sample mean of the g-th group. This quantity Vt,g can be thought as a scaled
version of the statistic At, defined in (8), but computed using only a subset of the data. To achieve
robustness against heavy-tailed errors, we consider the following median-of-means type statistic

AMoM
t := t ·median

(
p∑
j=1

Vt,1(j),

p∑
j=1

Vt,2(j), . . . ,

p∑
j=1

Vt,Gt(j)

)
. (16)
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Our test is denoted as
ϕP,dense := 1{maxt∈T AMoM

t /rt>1}, (17)

with the detection threshold rt to be specified in (18). Before presenting the theoretical guarantee
of the test ϕP,dense in Theorem 5, we first briefly explain the significance of median-of-means type
statistics and the novelty of our procedure.

Median-of-means type statistics like (16) have been widely applied in the context of mean es-
timation (Lugosi and Mendelson, 2019b), empirical risk minimisation (Lerasle and Oliveira, 2011;
Lecué and Lerasle, 2020) with applications to regression and density estimation problems (Humbert
et al., 2022), estimator selection (Kwon et al., 2021) and classification (Lecué and Lerasle, 2020),
among others. Arguably, the most well-known and simplest form is the median-of-means estimator
for univariate mean estimation. Suppose that we have i.i.d. data of size n with mean µ and variance
σ2. The median-of-means estimator µ̂MoM is obtained by first partitioning the data into G groups of
equal size, then calculating the sample mean within each group and finally computing the median of
these G samples means. It is shown in Lugosi and Mendelson (2019a, Theorem 2) that, for δ ∈ (0, 1),
when the number of groups G is chosen to be at least 8 log(1/δ), then with probability at least 1− δ,
the estimator µ̂MoM = µ̂MoM(δ) satisfies

|µ̂MoM − µ| ≤ σ

√
32 log(1/δ)

n
.

Thus, the median-of-means estimator can achieve sub-Gaussian performance in mean estimation
under only the assumption of finite second moment.

However, in our context, the aforementioned methodology is not applicable for testing potential
change point that is close to the boundary, as we will not have enough data to ensure good statistical
guarantees. Therefore, for t ∈ T such that t ≤ ∆ with the threshold ∆ specified later in (18), we
essentially directly take the median of t statistics in (16), i.e. Gt = t. Another challenge in our
context lies in analysing the performance of our test when α ∈ [2, 4]. Since we compute a second
order statistic Vt,g within each group g, standard analysis would require a bounded fourth moment
condition on the distribution. We are able to extend our result to this more challenging case of
α ∈ [2, 4], which is critical in unveiling a new phase transition phenomenon that is previously
unknown even when n is of constant order.

Theorem 5. Assume α ≥ 2. For any ε ∈ (0, 1), there exist C1, C2 > 0 depending only on α, K and
ε, such that the test ϕP,dense defined in (17) with

rt = C1p
(1/2)∨(2/α)Gt, Gt = t ∧∆ and ∆ = 23+⌈log2 log log(8n)⌉, (18)

satisfies that
RP(ρ, ϕP,dense) ≤ ε,

as long as ρ2 ≥ C2v
U
P,dense, where

vUP,dense := p(2/α)∨(1/2) log log(8n)

The following proposition shows that the test ϕP,dense is minimax rate-optimal up to log log(8n)
in the dense regime. More specifically, the gap is of order

√
log log(8n) when s >

√
p log log(8n)

and α ≥ 4 and of order log log(8n) otherwise. We carefully discuss this gap in Section 3.3.
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Proposition 6. Let α ≥ 2, K ≥ Kα and s ≥ p
1
2
−( 1

α−2
∧ 1

2
) ∨ c, for some absolute constant c > 0 and

some constant Kα > 0 depending only on α. There exists some constant c′ > 0 depending only on α
and K, such that RP(ρ) ≥ 1/2 whenever ρ2 ≤ c′vLP,dense, where

vLP,dense := p(2/α)∨(1/2)(log log(8n))ω/2 + log log(8n)

with ω = 1{
s>
√
p log log(8n)

}
∩{α≥4}

.

Compared to the remark following Proposition 2, we see that for α ≥ 4, the parameter α, which
encodes the heaviness of the tails, again only affects the boundary between the dense and the sparse
regimes, as illustrated in the left panel of Figure 1, and does not change the minimax testing rate
in the dense regime itself. On the other hand, when α ∈ [2, 4], the boundary no longer varies with
α, but the minimax testing rate in the dense regime increases as α decreases.

A closer look at the condition s ≥ p
1
2
−( 1

α−2
∧ 1

2
)∨c reveals that when α ∈ [2, 4], the lower bound in

Proposition 6 holds for essentially all sparsity levels except when s is less than an absolute constant,
which arises as an artefact of our proof. This means that the testing rates in this extreme heavy-
tailed setting are, in fact, independent of s, which implies that it is impossible to exploit the sparse
structure of the change in pursuit of better results. Therefore, in the subsequent discussion of sparse
regime, we only consider the case of α ≥ 4.

3.2 Sparse regime

In the sparse regime, we take two steps towards constructing a computationally-efficient and minimax
rate-optimal test denoted as ϕP,sparse, which is presented at the end of this section. This test achieves
the testing rate

vUP,sparse := s(p/s)2/α + log log(8n),

as shown in Theorem 9 and it is the minimax optimal testing rate in the sparse regime as confirmed
in Proposition 10.

A median-of-means-type test. Our first attempt is, at a high level, combining the median-of-
means methodology developed in the dense regime Section 3.1 with the hard-thresholding coordinate
selection technique used in Section 2.2. Recall that Zi = (Xi − Xn−i+1)/

√
2, for i ≤ n/2. For

t ∈ T \{1}, we split {Z1, . . . , Zt} into two halves: {Z1, Z3, . . . , Zt−1} and {Z2, Z4, . . . , Zt}. We
further split the first set into Gt groups of equal size, denoted as

Zt,1,1,Zt,2,1, . . . ,Zt,Gt,1,

with the number of groups Gt specified later in (20), and use Zt,g,1 to denote the sample mean of the
g-th group. Again, our choice of Gt will guarantee t/(2Gt) to be a positive integer. The second set
of samples {Z2, Z4, . . . , Zt} is reserved for selecting the signal coordinates as we did in Section 2.2.
Consider the statistic Vt,g,a ∈ Rp with

Vt,g,a(j) :=

(
Z

2
t,g,1(j)−

2Gt
t

)
1{|Yt,2(j)|≥a}, j ∈ [p],

where Yt,2(j) is defined in (10) and a is a selection threshold to be specified in (20). Our test statistic
takes almost the same form as in the dense case

AMoM
t,a :=

t

2
·median

(
p∑
j=1

Vt,1,a(j),

p∑
j=1

Vt,2,a(j), . . . ,

p∑
j=1

Vt,Gt,a(j)

)
.
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For the case of t = 1, we cannot perform sample-splitting and therefore we deal with it separately
by considering

AMoM
1,a := A1,a =

p∑
j=1

(Z2
1 (j)− 1)1{|Z1(j)|≥a}.

Finally, our test is
ϕMoM
P,sparse := 1{maxt∈T AMoM

t,a /rt>1}. (19)

The theoretical guarantee of ϕMoM
P,sparse is established in Proposition 7 below. It is worth mentioning

that in the hard-thresholding step, we simply use the non-robust quantity Yt,2 to estimate the signal
of each coordinate instead of its robust counterparts. This is mainly to avoid further complication of
the procedure since if, for example, the median-of-means estimator were deployed for each coordinate,
then we would need to further split the data into groups and deal with the case when t is close to
the boundary.

Proposition 7. Assume α ≥ 4. For any ε ∈ (0, 1), there exist C1, C2, C3 > 0 depending only on α,
K and ε, such that the test ϕMoM

P,sparse defined in (19) with

a = C1

(
(p/s)1/α + s−1/2 log1/2(log(8n))

)
, rt = C2

(
s(p/s)2/α1{t=1} +

√
sGt1{t>1}

)
,

Gt = (t ∧∆)/2 and ∆ = 24+⌈log2 log log(8n)⌉,
(20)

satisfies that
RP(ρ, ϕ

MoM
P,sparse) ≤ ε,

as long as ρ2 ≥ C3v
U,MoM
P,sparse, where

vU,MoM
P,sparse := s

(
(p/s)2/α + log log(8n)

)
.

A robust-sparse-mean-based test. The rate achieved by ϕMoM
P,sparse is slightly worse than the

presented rate (vii) in Table 1. Our second attempt, in order to close this gap, is to use some robust
sparse mean estimator in the literature to directly construct a test. One example of such estimator
is given in Prasad et al. (2019):

µ̂RSM
n,s ({Wi}ni=1; η) := inf

µ∈Ls

sup
u∈N 1/2

2s (Sp−1)

|u⊤µ− 1DRobust({u⊤Wi}ni=1, η/(6ep/s)
s)|, (21)

where W1, . . . ,Wn ∈ Rp are input data, Ls := {v ∈ Rp : ∥v∥0 ≤ s} is the set of s-sparse vectors in

Rp, N 1/2
2s (Sp−1) is a (1/2)-cover of the set of 2s-sparse unit vectors with cardinality |N 1/2

2s (Sp−1)| ≤
(6ep/s)s (Vershynin, 2009), and 1DRobust is a univariate robust mean estimator defined in Prasad
et al. (2019, Algorithm 2) based on the shorth estimator (e.g. Andrews and Hampel, 2015). One
may naturally consider other univariate robust mean estimators in place of 1DRobust, including
the median-of-means, as discussed briefly in Section 3.1 or trimmed mean variants (Lugosi and
Mendelson, 2021). We note that (21) achieves a near-optimal statistical guarantee for the task of
sparse mean estimation (Prasad et al., 2019, Corollary 11), despite its high computational complexity,
scaling exponentially in p.

To this end, we describe the testing procedure using µ̂RSM
n,s ({Wi}ni=1; η) as an alternative of

ϕMoM
P,sparse. For t ≤ ∆̃1, use the non-robust statistic At,a as defined in (12). For t ∈ T ∩ {t > ∆̃1},

construct the statistic from the ℓ2 norm of this robust sparse mean estimator:

ARSM
t := t

∥∥µ̂RSM
t,s,ηt

∥∥2
2
= t
∥∥µ̂RSM

t,s ({Zi}ti=1; ηt)
∥∥2
2
.
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With all the parameters a, ∆̃1, ∆̃2, r̃t, r
RSM
t and ηt specified later in (23), our test is given by

ϕRSM
P,sparse := 1{

maxt∈T ∩{t≤∆̃1}
At,a/r̃t>1

} ∨ 1{
maxt∈T ∩{t>∆̃1}

ARSM
t /rRSM

t >1
}. (22)

The theoretical guarantee of ϕRSM
P,sparse is established in the following result.

Proposition 8. Assume α ≥ 4. For any ε ∈ (0, 1), there exist C1, C2, C3, C4, C5 > 0 depending
only on α, K and ε, such that the test ϕRSM

P,sparse defined in (22) with

a = C1

(
(p/s)1/α + s−1/2 log1/2(log ∆̃1)

)
, r̃t = C2

(
s(p/s)2/α1{t=1} +

√
s log ∆̃11{t>1}

)
,

ηt = exp

{
s log(ep/s)− t ∧ ∆̃2

C3

}
, rRSM

t = C4(t ∧ ∆̃2),

∆̃1 = C3

(
s log(ep/s) + log(16/ε)

)
and ∆̃2 = C3

(
s log(ep/s) + log(16 log(2n)/ε)

)
,

(23)

satisfies that
RP(ρ, ϕ

RSM
P,sparse) ≤ ε,

as long as ρ2 ≥ C5v
U
P,sparse, where

vUP,sparse = s(p/s)2/α + log log(8n).

Before addressing the issue of computation, several remarks are in order. The main reason we
separate t ∈ T into different regions is, similar to the issue with median-of-means methods, that
(21) cannot be applied when t is too close to the boundary, and therefore, we need to resort to the
non-robust testing statistics At,a. A more subtle issue which is critical in achieving, in fact, the
optimal rate vUP,sparse, is that we apply the non-robust testing statistics only to a very small number

of points in T . Indeed, the boundary ∆̃1 is chosen to be independent of n so that the power of (21)
can be maximally exploited. Lastly, we mention that our proof of Proposition 8, which establishes
the theoretical guarantee of ϕRSM

P,sparse, is actually modular. Any other sparse mean estimator that

satisfies a more general condition (Condition 1 in Appendix A.1.5) may be used in place of µ̂RSM
t,s,ηt

and the corresponding test achieves the same performance.

The combined test. As we mentioned before, one caveat of using a robust estimator such as
(21), and in fact, a common issue in high-dimensional robust statistics in order to achieve good
performance, is that the estimator is computationally-intractable since it often involves projecting
the data onto every 2s-sparse unit vectors or its covering set. As a result, even though the testing
procedure ϕRSM

P,sparse in (22) performs better at detecting change point with weak signal compared
to the previous median-of-means type test, the computational cost makes it not implementable in
practice, especially when p is large. The main result of this section, as presented in the theorem
below, is a testing procedure that achieves the best of both worlds - computational efficiency and
minimax optimality.

Theorem 9. Assume α ≥ 4. Consider the test

ϕP,sparse :=

{
ϕRSM
P,sparse, if p ≤ logα−2(log(8n)),

ϕMoM
P,sparse, otherwise,

with the parameters of ϕMoM
P,sparse and ϕRSM

P,sparse chosen according to (20) and (23) respectively. It then
holds that

RP(ρ, ϕP,sparse) ≤ ε,
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as long as ρ2 ≥ C1v
U
P,sparse, for some constant C1, depending only on α, K and ε. Moreover, the

computational complexity of ϕP,sparse is polynomial in both n and p.

Theorem 9 is based on the following neat observation: by comparing vU,MoM
P,sparse and vUP,sparse, as

established in Proposition 7 and Proposition 8 respectively, the improvement offered by ϕRSM
P,sparse

over ϕMoM
P,sparse only exists when p is sufficiently small. Therefore, we can bypass the computation

barrier by using ϕRSM
P,sparse only when it outperforms ϕMoM

P,sparse, which allows us to yield a combined
testing procedure that has run time polynomial in n and p while achieving the optimal rate in the
sparse regime.

Proposition 10. Let α ≥ 4, K ≥ Kα and c ≤ s ≤ p
1
2
− 1

α−2 , for some absolute constant c > 0 and
some constant Kα > 0 depending only on α. There exists some constant c′ > 0 depending only on α
and K, such that RP(ρ) ≥ 1/2 whenever ρ2 ≤ c′vLP,sparse, where

vLP,sparse := s(p/s)2/α + log log(8n).

Similar to the discussion following Proposition 4, we conclude from the above proposition and
Theorem 9 that the combined test ϕP,sparse achieves the minimax testing rate in the sparse regime
as long as the sparsity level is larger than an absolute constant, which again arises as an artefact of
our proof.

3.3 Discussion on the minimaxity gap

We start off with the case α ≥ 4, where there is a non-empty sparse regime s < s∗P = p1/2−1/(α−2).
Note that the boundary satisfies s∗P = ζ−1

P (
√
p), where ζP(s) := s(p/s)2/α. Our first observation is

that the upper and lower bounds on the minimax testing rate again match in the sparse regime. This
is the same conclusion as in the sub-Weibull error setting. In the dense regime, note that for any
sparsity level the upper and lower bounds on the minimax testing rates are only off by a factor of
order at most log log(8n). We explain this gap from two aspects. First, recall from the discussion in
Section 2.3 that we have a minimaxity gap of

√
log log(8n) in the dense regime under the sub-Weibull

error distribution setting. This remains the case when we have polynomially-decaying tails.
We now explain the second component of the minimaxity gap. In the dense regime, we have

vUP,dense(p, n, s) =
√
p log log(8n). Comparing this with the dense regime upper bound rate in the

sub-Weibull case vUG,dense(p, n, s) =
√
p log log(8n), we observe an extra factor of

√
log log(8n) when

error distributions only have polynomially-decaying tails. We conjecture that our upper bound rate
in the dense regime vUP,dense(p, n, s) may not be tight, and propose a potential strategy to close
this gap. Lugosi and Mendelson (2019b) among others show that, for δ ∈ (0, 1), there exists a
multivariate mean estimator µ̂(δ), such that for all distributions with mean µ and covariance Ip,
with probability at least 1− δ,

∥µ̂(δ)− µ∥ ≤ C

(√
p

n
+

√
log(1/δ)

n

)
, (24)

where n is the sample size and C is a universal constant. Consider an estimator µ̂′(δ) that satisfies
the following stronger condition similar to Laurent and Massart (2000, Lemma 1) for all distributions
with finite fourth moment:

∥µ̂′(δ)− µ∥22 −
p

n
≤ C

(√
p log(1/δ)

n
+

log(1/δ)

n

)
. (25)
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If we could find an estimator that satisfies (25), then it might help us improve the upper bound on
the minimax testing rate from

√
p log log(8n) to

√
p log log(8n) in the dense regime, as Laurent and

Massart (2000, Lemma 1) lies at the heart of proving the dense rate of
√
p log log(8n) under Gaussian

noise assumption in Liu et al. (2021). However, whether such a robust estimator exists remains an
open question. Combining the two gaps discussed above, we conclude that for any sparsity level in
the dense regime, the upper bound and the lower bound of the minimax testing rate are only off by
a factor of order at most log log(8n).

Lastly, we consider 2 ≤ α < 4. We first note that for α = 2, the minimax optimal rate is
p+log log(8n). This can be shown by combining the lower bound derived from Section A.3 items (i)
and (iii) and a test construction similar to (22) while replacing µ̂RSM by a robust mean estimator µ̂
that satisfies (24). In view of the above minimax testing rates at α = 2 and α ≥ 4, we conjecture
the precise minimax testing rates for α ∈ (2, 4) to be

p2/α log1−2/α log(8n) + log log(8n).

Using Theorem 5 and Proposition 6, the best upper and lower bounds we can achieve in this
regime are of the orders p2/α log log(8n) and p2/α + log log(8n) respectively. The precise exponent
on log log(8n) may have an interesting dependence on α that will need to be characterised in future
research.

4 Adaptation to sparsity

In Sections 2 and 3, we have studied the change point testing problem under two types of heavy-tail
assumptions on the error distributions: (1) exponentially-decaying/sub-Weibull tails and (2) finite
α-th moment assumption with α ≥ 2. The corresponding upper bound rates, e.g. vUG,sparse and

vUP,sparse, are currently achieved by testing procedures that take the sparsity level s as an input. In
other words, we have assumed the sparsity to be known up until now. In this section, we study the
adaptation of these procedures to unknown sparsity levels.

First off, in the very heavy-tailed setting, i.e. each entry of E has only finite α-th moments for
α ∈ [2, 4], there is essentially no sparse regime, see the discussion following Proposition 6. The test
ϕP,dense defined in (17) with its parameters specified in Theorem 5 does not require the knowledge
of the sparsity, and, therefore, the corresponding rate vUP,dense = p2/α log log(8n) can already be
achieved by an adaptive procedure.

We now focus on the case when Pe ∈ P⊗
α,K for α > 4. Recall from Theorems 5 and 9 that ϕP,dense

and ϕP,sparse achieve the rates vUP,dense and v
U
P,sparse respectively, when the sparsity is known. In the

following, we introduce an adaptive testing procedure based on these two tests:

ϕP,adaptive := ϕP,dense ∨max
s∈K

ϕP,sparse,s

=

{
ϕP,dense ∨maxs∈K ϕ

MoM
P,sparse,s, if p > logα−2(log(8n)),

ϕP,dense ∨maxs∈K ϕ
RSM
P,sparse,s, if p ≤ logα−2(log(8n)),

(26)

where we make the dependence on s explicit when referring to the sparse tests, and K :={
1, 2, 4, . . . , 2⌈log2(p)⌉−1

}
is a dyadic grid. Recall that ϕP,dense does not require the knowledge of

s, and we keep its original parameter choices as in (18), with perhaps an enlarged value of the
leading constant C1 in rt:

rt = C1p
(1/2)∨(2/α)Gt, Gt = t ∧∆ and ∆ = 23+⌈log2 log log(8n)⌉. (27)
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For ϕMoM
P,sparse,s, we modify the original parameter choices (20) as follows:

as = C2

(
(p/s)1/α + s−1/2 log1/2(log(8n))

)
, rt,s = C3

(
s(p/s)2/α1{t=1} + s3/4Gt1{t>1}

)
,

Gt = (t ∧∆)/2 and ∆ = 24+⌈log2 log log(8n)⌉.
(28)

Compared with (20), we use the same as (again with perhaps a larger leading constant) and modify
rt,s. Finally, for ϕ

RSM
P,sparse,s, we modify its original parameter choices (23) to be:

as = C4

(
(p/s)1/α + s−1/2 log1/2(log ∆̃1,s)

)
, r̃t,s = C5

(
s(p/s)2/α1{t=1} + s3/4

√
log ∆̃11{t>1}

)
,

ηt,s = exp

{
s log(ep/s)− t ∧ ∆̃2

C6

}
, rRSM

t,s = C7(t ∧ ∆̃2,s),

∆̃1,s = C6

(
s log(ep/s) + log(80s/ε)

)
and ∆̃2,s = C6

(
s log(ep/s) + log(80s log(2n)/ε)

)
.
(29)

Theorem 11. Assume α ≥ 4. For any ε ∈ (0, 1), there exist C1, . . . , C8 > 0 depending only on
α, K and ε, such that the test ϕP,adaptive defined in (26) with its parameters specified in (27), (28)
and (29) satisfies

RP(ρ, ϕP,adaptive) ≤ ε,

as long as ρ2 ≥ C8

(
vUP,dense ∧ vUP,sparse

)
.

Theorem 11 establishes the theoretical guarantee of the adaptive test ϕP,adaptive which does not
require the knowledge of the sparsity parameter. Note that the rate that it achieves, i.e. vUP,dense ∧
vUP,sparse, matches the lower bound in the sparse regime s < s∗P , where s

∗
P is defined in (15), while

a gap of order up to log log(8n) exists in the dense regime s ≥ s∗P ; see Section 3.3 for a thorough
discussion on this gap. When the errors have exponentially-decaying tails instead, a similar adaptive
testing procedure can be constructed based on ϕG,dense and ϕG,dense and achieve the rate vUG,dense ∧
vUG,sparse. For the sake of brevity, we omit further details here.

5 Discussion

In this paper, we have studied the problem of testing against a single mean change point for high-
dimensional heavy-tailed data. We have characterised the minimax testing rates of this problem
up to

√
log log(8n) in the case of exponentially-decaying tails, and up to log log(8n) in the case

of polynomially-decaying tails. Thorough discussions on these gaps are provided in Sections 2.3
and 3.3. In addition, our results quantify the costs of heavy-tailed distributions in this problem by
comparing to the previous results under Gaussian error assumption (Liu et al., 2021) and unveil a
new phenomenon that the minimax testing rates of mean change point problem undergo a phase
transition when the error distribution has finite fourth moment. It is known that for the mean
estimation problem, the fundamental difficulty change drastically when the distribution has fewer
than two finite moments (e.g. Bubeck et al., 2013; Cherapanamjeri et al., 2022). Our results suggest
that detecting mean change is rather different from mean estimation and, in fact, has close links to
the problem of signal estimation in the sequence model (Comminges et al., 2021). There are several
avenues for future research and we briefly discuss them below.

Temporal and spatial dependence. Throughout this paper, we have assumed independence
across both coordinates and time. This is possibly the most natural starting point. To relax
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the independence assumption, one may consider data columns to be stationary with short-range
dependence as considered in, for example Wang and Samworth (2018) and Liu et al. (2021). Theory
in such settings would require deploying different finite sample analysis tools under weak dependence.
As for spatial dependence, similar strategies would work as conducted in e.g. Jiang et al. (2023).
Alternatively, for allowing a general covariance matrix Σ, if we assume that Σ−1/2E has independent
components with all eigenvalues of Σ being of constant order, then at least in the dense case, all our
theoretical results remain valid. We leave a thorough investigation into these two generalisations for
future endeavours.

Adaptation to α. All of our proposed testing procedures require the knowledge of α, the tail de-
caying index in the case of Gα,K and the number of finite moments in the case of Pα,K , through the
choices of parameters. Note that if we under-specify α, all of our theoretical guarantees still hold,
albeit non-optimal rates achieved by the procedures. On the other hand, an over-specification of α
would invalidate our results. In practice, practitioners, based on domain knowledge, usually have
a conservative idea on how heavy the tails may be. There have been some recent works on distin-
guishing between exponentially-decaying and polynomially-decaying tails (e.g. Castillo et al., 2014;
Bhati, 2020) and on estimating the tail index parameter for sub-Weibull distributions (Vladimirova
et al., 2020), which may be combined with our tests to obtain adaptivity. We leave this ambitious
task for the future.

Multiple change points setting. A natural extension of this work is to consider the problem of
testing and/or estimation multiple change points. A wide range of methodologies in change point
analysis literature have been proposed to detect multiple change points via repeatedly testing for
a single change point in a collection of sub-intervals of the entire time series data. Many of them
share a multiscale nature, including wild binary segmentation (Fryzlewicz, 2014), seeded binary
segmentation (Kovács et al., 2022) and grid-based approaches (Pilliat et al., 2023). The theoretical
performance of these methods is well studied for non-robust change point detection problems under
various models. These results serve as warm-starts for future research agendas on multiple change
point detection within high-dimensional heavy-tailed data streams.
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Appendices

The proofs of all theoretical results are presented in the Appendices. Appendix A.1 contains proofs
of upper bound results, including Theorem 1, Theorem 3, Theorem 5, Proposition 7, Proposition 8
and Theorem 9. Theorem 11 regarding the adaptive test is proved in Appendix A.2. All lower
bound results, including Proposition 2, Proposition 4, Proposition 6 and Proposition 10 are proved
in Appendix A.3. Appendix B contain auxiliary results.

A Proofs

A.1 Proofs of upper bound results

Throughout the proofs in this subsection, we fix Pe ∈ G⊗
α,K (resp. P⊗

α,K) and write Eθ in place of
Eθ,Pe for the ease of notation. In every proof, we desire to control the two terms supθ∈Θ0(p,n) Eθϕ
(‘null term’) and supθ∈Θ1(p,n,s,ρ) Eθ(1 − ϕ) (‘alternative term’) respectively. The values of the
constants C1, C2, . . . vary from proof to proof. Note also that the order of the constants in each
proof do not necessarily match that in the statement of the result, e.g. C3 in the proof of Theorem 1
below corresponds to C1 in the statement of Theorem 1.

A.1.1 Proof of Theorem 1

Null term. For any θ ∈ Θ0(p, n), we can write

Yt =

∑t
i=1(Xi − θ1)−

∑t
i=1(Xn+1−i − θ1)√

2t
.

Observe that Yt = (Yt(1), . . . , Yt(p))
⊤ has independent components, each having mean 0 and variance

1. Moreover, each Xi(j)− θ1(j) is a (centered) sub-Weibull random variable of order α belonging to
the class Gα,K . Now, we consider the following block diagonal matrix B ∈ R2tp×2tp:

B =


Bblock 0 · · · 0

0 Bblock · · · 0
...

...
. . .

...
0 0 · · · Bblock

 ,

where Bblock = (bij)i,j∈[2t] ∈ R2t×2t is defined as follows:

bij =


1
2t if i = j,
1
t if 1 ≤ i ̸= j ≤ t or t < i ̸= j ≤ 2t,

−1
t if 1 ≤ i ≤ t < j ≤ 2t or 1 ≤ j ≤ t < i ≤ 2t.

Let Ui(j) = Xi(j)− θ1(j), now for any j ∈ [p], we can write

Y 2
t (j) =

1

2t

( t∑
i=1

Ui(j)−
t∑
i=1

Un+1−i(j)

)2

= Ũ⊤BŨ,

where Ũ ∈ R2tp has its first 2t coordinates as

(U1(1), U2(1), . . . , Ut(1), Un+1−t(1), . . . , Un(1))
⊤,
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and the remaining entries take the same form but with the coordinate index changing from 1 to p.
We calculate four different norms of matrix B:

∥B∥F =

√
2tp

(
1

4t2
+

2t− 1

t2

)
≤ 2

√
p,

∥B∥2 =
1

2t
+

2t− 1

t
≤ 2,

∥B∥2→∞ = max
i∈[2t]

√∑
j∈[2t]

b2ij ≤
√

2

t
,

∥B∥max = 1/t.

For α ∈ [1, 2], we observe by Proposition 13 that Gα,K ⊆ G1,K′ for some constant K ′ > 0, depending
only on K. Recall that At =

∑
j∈[p] Y

2
t (j)− p. Thus, for any α ∈ (0, 2], by applying Proposition 15,

we have

Pθ(At > r) ≤ exp

{
1−

(
r

C1
√
p

)2
}

+ exp

{
1− r

C1

}
+ exp

{
1−

(
r
√
t

C1

) 2α
2+α

∧ 2
3

}

+ exp

{
1−

(
rt

C1

)α
2
∧ 1

2

}
,

where C1 > 0 is some constant depending only on α and K from Proposition 15. Then, by a union

bound and Lemma 18, we obtain that for any θ ∈ Θ0(p, n) and r ≥ C1

{(
2

α
2+α

∧ 1
3 − 1

)−( 2+α
α

∨3
)
∨(

2
α
2
∧ 1

2 − 1
)−( 2

α
∨2
)}

EθϕG,dense = Pθ
(
max
t∈T

At,0 > r
)
≤ e log2(n) exp

{
−
(

r

C1
√
p

)2
}

+ e log2(n) exp

{
− r

C1

}

+ e
∑
t∈T

exp

{
−
(
r
√
t

C1

) 2α
2+α

∧ 2
3

}
+ e

∑
t∈T

exp

{
−
(
rt

C1

)α
2
∧ 1

2

}

≤ e log2(n) exp

{
−
(

r

C1
√
p

)2
}

+ e log2(n) exp

{
− r

C1

}

+ 2e exp

{
−
(
r

C1

) 2α
2+α

∧ 2
3

}
+ 2e exp

{
−
(
r

C1

)α
2
∧ 1

2

}
, (30)

There thus exists a large enough constant C2 > 0 depending only on α and C1, such that, when

r ≥ C2

(√
p log(8eε−1 log2(n)) + log(8eε−1 log2(n)) + log

2
α
∨2(16eε−1)

)
,

or equivalently,
r ≥ C3

(√
p log log(8n) + log log(8n)

)
,

for some constant C3 > 0, depending only on α, K and ε, we have EθϕG,dense ≤ ε/2 for any
θ ∈ Θ0(p, n).
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Alternative term. For any θ ∈ Θ(p, n, s, ρ), there exists some t0 ∈ [n], such that the mean change

happens at time t0, with
t0(n−t0)

n ∥µ1 − µ2∥2 ≥ ρ2. We may assume without loss of generality that
t0 ≤ n/2. By the definition of T , there exists a unique t̃ ∈ T such that t0/2 < t̃ ≤ t0. Note that
then we can write

Yt̃ =

√
t̃

2
(µ1 − µ2) +

∑t̃
i=1(Xi − µ1)−

∑t̃
i=1(Xn+1−i − µ2)√

2t̃
=: δ + Y ′

t̃
, (31)

where ∥δ∥22 ≥ t0∥µ1 − µ2∥22/4 ≥ ρ2/4. Note also that for all j ∈ [p], we have Eθ[Y ′
t̃
(j)] = 0 and

E[(Y ′
t̃
(j))2] = 1. By Proposition 12(b) and Lemma 19(a), we have E[(Y ′

t̃
(j))4] ≤ C4 for some

constant C4 > 0, depending only on α and K. When ρ2 ≥ 8r ≥ 8C3

(√
p log log(8n) + log log(8n)

)
,

we have by Chebyshev’s inequality that

Eθ(1− ϕG,dense) ≤ Pθ
(
max
t∈T

p∑
j=1

Yt(j)
2 − p ≤ ρ2/8

)
≤ Pθ

( p∑
j=1

(
Yt̃(j)

2 − δ(j)2 − 1
)
≤ −∥δ∥22/2

)

≤
4
∑p

j=1Varθ(Yt̃(j)
2)

∥δ∥42
=

4
∑p

j=1Varθ
(
Y ′
t̃
(j)2 + 2δ(j)Y ′

t̃
(j)
)

∥δ∥42

≤
4
∑p

j=1

{
2Varθ(Y

′
t̃
(j)2) + 8δ(j)2Varθ(Y

′
t̃
(j))

}
∥δ∥42

≤
∑p

j=1

{
8Eθ[Y ′

t̃
(j)4] + 32δ(j)2

}
∥δ∥42

≤ 8C4p+ 32∥δ∥22
∥δ∥42

≤ 128

(
C4p

ρ4
+

1

ρ2

)
≤ 2C4

C2
3 log log(8n)

+
16

C3

√
p log log(8n)

, (32)

where we have used the fact that Var(X + Y ) ≤ 2(Var(X) + Var(Y )) in the fourth inequality.
Therefore, by having C3 > max

{
64/ε,

√
8C4/ε

}
, we are guaranteed that Eθ(1− ϕG,dense) ≤ ε/2 and

the desired result follows.

A.1.2 Proof of Theorem 3

Null term. For any θ ∈ Θ0(p, n), we have by a union bound that

EθϕG,sparse ≤ Pθ(A1,a > r1) +
∑

t∈T \{1}

Pθ(At,a > r). (33)

We first control the second term in (33). Recall the definition of Yt,1 and Yt,2 from (10) and denote
Jt,a := {j ∈ [p] : |Yt,2(j)| ≥ a} for t ∈ T and a ≥ 0. Note that Jt,a is a random set. Then,

∑
t∈T \{1}

Pθ(At,a > r) ≤
∑

t∈T \{1}

Pθ

( ∑
j∈Jt,a

(
Y 2
t,1(j)− 1

)
> r

)

=
∑

t∈T \{1}

Eθ

[
Pθ

( ∑
j∈Jt,a

(
Y 2
t,1(j)− 1

)
> r

∣∣∣∣∣ Jt,a
)]

=
∑

t∈T \{1}

∑
J⊆[p]

{
Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r

)
Pθ(Jt,a = J)

}

≤
∑

t∈T \{1}

Pθ(|Jt,a| > s) +
∑

t∈T \{1}

sup
J⊆[p]:|J |≤s

Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r

)
, (34)
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where the third line follows from the independence of Yt,1 and Yt,2. We now control the two terms
in (34) respectively. Using Proposition 14 with ui = t−1/2 for i = 1, . . . , t/2 and ui = −t−1/2 for
i = t/2 + 1, . . . , t, we obtain that for any t ∈ T , j ∈ [p] and x ≥ 0

Pθ(|Yt,2(j)| ≥ x) ≤ exp

{
1−min

{(
x

C1

)2

,

(
x

C1∥u∥β(α)

)α}}
,

for some constant C1 ≥ 1 depending only on α and K. For α ≤ 1, we have ∥u∥β(α) = ∥u∥∞ = t−1/2

and for 1 < α ≤ 2, we have ∥u∥β(α) = ∥u∥α/(α−1) = t1/2−1/α. Thus

qt,a := Pθ(|Yt,2(j)| ≥ a) ≤ exp

{
1−min

{(
a

C1

)2

,

(
a

C1t
(− 1

2
)∨( 1

2
− 1

α
)

)α}}
. (35)

For 0 < α < 2, by combining (35) and a binomial tail bound (Hoeffding, 1963, eq.(2.1)), we have

∑
t∈T \{1}

Pθ(|Jt,a| > s) ≤
∑

t∈T \{1}

(
p

s

)
qst,a ≤

∑
t∈T \{1}

(
epqt,a
s

)s

≤ log2(n)

(
2e2p

s

)s
exp

{
−sa

2

C2
1

}
+

(
2e2p

s

)s ∑
t∈T \{1}

exp

{
−s

(
a

2α
α∧(2−α) t

C
2α

α∧(2−α)

1

)α∧(2−α)
2

}

≤ log2(n)

(
2e2p

s

)s
exp

{
−sa

2

C2
1

}
+ 2

(
2e2p

s

)s
exp

{
−sa

α

Cα1

}
, (36)

provided that a ≥ C1

(
2

α∧(2−α)
2 − 1

)−1/α
, where we have used Lemma 18 in the last inequality. In

fact, for α = 2, by (35), the final bound in (36) remains valid for all a ≥ 0. Thus, as long as we
choose a to satisfy

a ≥ C2

(
log1/α(ep/s) + s−1/2 log1/2(ε−1 log(8n)) + s−1/α log1/α(eε−1)

)
for some large enough C2 > 0, depending only on α and K, we are guaranteed that∑

t∈T \{1}

Pθ(|Jt,a| > s) ≤ ε/8. (37)

We now bound the second term in (34) by invoking a very similar argument used in (30):

∑
t∈T \{1}

sup
J⊆[p]:|J |≤s

Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r

)

≤
∑

t∈T \{1}

sup
J⊆[p]:|J |≤s

{
exp

{
1−

(
r

C3

√
|J |

)2
}

+ exp

{
1− r

C3

}
+ exp

{
1−

(
r
√
t

C3

) 2α
2+α

∧ 2
3

}

+ exp

{
1−

(
rt

C3

)α
2
∧ 1

2

}}

≤ e log2(n) exp

{
−
(

r

C3
√
s

)2
}

+ e log2(n) exp

{
− r

C3

}
+ 2e exp

{
−
(
r

C3

) 2α
2+α

∧ 2
3

}
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+ 2e exp

{
−
(
r

C3

)α
2
∧ 1

2

}
≤ ε/8, (38)

whenever
r ≥ C4

(√
s log(ε−1 log(8n)) + log(ε−1 log(8n)) + log

2
α
∨2(eε−1)

)
,

where C3, C4 > 0 are constants, depending only on α and K. Now for the first term in (33), by
Proposition 17(a), whenever r1 ≥ C ′

4s log
2/α(ep/s) for some sufficiently large C ′

4 > 0, depending on
α,K and ε, we have

Pθ(A1,a > r1) ≤ ε/4. (39)

By combining (33), (34), (37), (38) and (39), we conclude that EθϕG,sparse ≤ ε/2 for all θ ∈ Θ0(p, n).

Alternative term. We use the same argument as at the beginning of the alternative part of the
proof of Theorem 1. Recall that there exists a unique t̃ ∈ T such that t0/2 < t̃ ≤ t0. We first
consider the case t0 ≥ 2. This implies t̃ ≥ 2. Now, similar to (31), we can write

Yt̃,1 =

√
t̃

2
(µ1 − µ2) +

∑t̃/2
i=1(X2i−1 − µ1)−

∑t̃/2
i=1(Xn−2i+1 − µ2)√

t̃
=: δ + Y ′

t̃,1
,

Yt̃,2 =

√
t̃

2
(µ1 − µ2) +

∑t̃/2
i=1(X2i − µ1)−

∑t̃/2
i=1(Xn−2i+2 − µ2)√
t̃

=: δ + Y ′
t̃,2
.

The quantity δ :=
√
t̃(µ1 − µ2)/2 satisfies ∥δ∥22 ≥ ρ2/8. Denote Sδ := {j ∈ [p] : δ(j) ̸= 0} and

Hδ,a := {j ∈ [p] : |δ(j)| ≥ 2a}. Note that these two sets are deterministic, while Jt̃,a = {j ∈ [p] :

|Yt̃,2(j)| ≥ a} is random. Then, when ρ2 ≥ 192(r + 2s) log(8/ε), we have

Eθ(1− ϕG,sparse) ≤ Pθ
( ∑
j∈Jt̃,a

(
Y 2
t̃,1
(j)− 1

)
≤ r

)

= Pθ
( ∑
j∈Jt̃,a∩Hc

δ,a

(
Y 2
t̃,1
(j)− 1

)
+

∑
j∈Jt̃,a∩Hδ,a

(
Y 2
t̃,1
(j)− 1

)
≤ r

)

≤ Pθ
(
|Jt̃,a| > 2s

)
+ Pθ

( ∑
j∈Jt̃,a∩Hδ,a

(
Y 2
t̃,1
(j)− 1

)
≤ r + 2s

)

≤ Pθ
(
|Jt̃,a| > 2s

)
+ Pθ

( ∑
j∈Jt̃,a∩Hδ,a

δ(j)2 <
∥δ∥22

12 log(8/ε)

)

+ Pθ
( ∑
j∈Jt̃,a∩Hδ,a

(
Y 2
t̃,1
(j)− δ(j)2 − 1

)
≤ − ∥δ∥22

24 log(8/ε)

)
. (40)

We now control the three terms in (40) respectively. By (37), we have

Pθ
(
|Jt̃,a| > 2s

)
≤ Pθ

(
|Jt̃,a ∩ Scδ | > s

)
≤ ε/8. (41)

For the second term, we observe that for all j ∈ Hδ,a

Pθ(|Yt̃,2(j)| < a) = Pθ(|δ(j) + Y ′
t̃,2
(j)| < a) ≤ Pθ(|Y ′

t̃,2
(j)| > |δ(j)| − a)

≤ exp
{
1−

(
(|δ(j)| − a)/C1

)α} ≤ 1/2, (42)
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where the penultimate inequality follows from (35) and the last two inequalities follow from the
choice a ≥ C12

1/α. Consequently,

Varθ
(
δ(j)21{|Yt̃,2(j)|≥a}

)
≤ δ(j)4Pθ(|Yt̃,2(j)| < a) ≤ eδ(j)4 exp{−(|δ(j)|/(2C1))

α}

≤ eδ(j)4{
(|δ(j)|/(2C1))4

}
/⌈4/α⌉!

= 16eC4
1⌈4/α⌉! =: C5, (43)

Moreover, when ρ2 ≥ 64a2s, we obtain∑
j∈Hδ,a

δ(j)2 ≥ ∥δ∥22 − s(2a)2 ≥ ∥δ∥22/2. (44)

We first consider the case ∥δ∥2 ≥
√

12 log(8/ε)∥δ∥∞. Then, when ρ2 ≥ 192C5s, by combin-
ing (42), (43), (44) and Bernstein’s inequality, we have

Pθ
( ∑
j∈Jt̃,a∩Hδ,a

δ(j)2 < ∥δ∥22/8
)

= Pθ
( ∑
j∈Hδ,a

δ(j)21{|Yt̃,2(j)|≥a} < ∥δ∥22/8
)

≤ Pθ
( ∑
j∈Hδ,a

δ(j)2
(
1{|Yt̃,2(j)|≥a} − Pθ(|Yt̃,2(j)| ≥ a)

)
< −∥δ∥22/8

)

≤ exp

{
− ∥δ∥42/64
2
∑

j∈Hδ,a
Varθ

(
δ(j)21{|Yt̃,2(j)|≥a}

)
+ ∥δ∥2∞∥δ∥22/12

}
≤ exp

{
− ∥δ∥42/64
2C5s+ ∥δ∥2∞∥δ∥22/12

}
≤ exp

{
− ∥δ∥22
12∥δ∥2∞

}
≤ ε/8. (45)

If instead ∥δ∥∞ ≤ ∥δ∥2 <
√

12 log(8/ε)∥δ∥∞, we assume that |δ(j∗)| = ∥δ∥∞ for some j∗ ∈ Hδ,a.

Note that when ρ2 ≥ 384C2
1 log

α+2
α (8e/ε), we have |δ(j∗)| ≥ 2C1 log

1/α(8e/ε) and thus

Pθ
( ∑
j∈Jt̃,a∩Hδ,a

δ(j)2 <
∥δ∥22

12 log(8/ε)

)
≤ Pθ

(
δ(j∗)21{|Yt̃,2(j∗)|≥a} <

∥δ∥22
12 log(8/ε)

)
≤ Pθ(|Yt̃,2(j

∗)| < a) ≤ exp{1− (|δ(j∗)|/(2C1))
α} ≤ ε/8. (46)

For the third and final term in (40), we have by Chebyshev’s inequality that

Pθ
( ∑
j∈Jt̃,a∩Hδ,a

(
Y 2
t̃,1
(j)− δ(j)2 − 1

)
≤ − ∥δ∥22

24 log(8/ε)

)

≤

∑
j∈Hδ,a

Varθ

((
Y 2
t̃,1
(j)− δ(j)2 − 1

)
1{|Yt̃,2(j)|≥a}

)
∥δ∥42/(576 log

2(8/ε))
≤
∑

j∈Hδ,a
Varθ

(
Y 2
t̃,1
(j)
)

∥δ∥42/(576 log
2(8/ε))

≤ C6 log
2(8/ε)

(
s

ρ4
+

1

ρ2

)
, (47)

where C6 ≥ 1 is a constant depending on α and K and the penultimate inequality follows from a
similar argument to (32). Hence, when

ρ2 ≥ C6ε
−1max

{
192(r + 2s) log(8/ε), 64a2s, 192C5s, 384C

2
1 log

α+2
α (8e/ε)

}
,
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we have by combining (40), (41), (45), (46) and (47) that

Eθ(1− ϕG,sparse) ≤ ε/4 + C6 log
2(8/ε)

(
s

ρ4
+

1

ρ2

)
≤ ε/2.

Finally, We consider the case that the mean change happens at t0 = 1 instead. Recall that in this
case we have t̃ = 1. (40) remains true when ρ2 ≥ 192(r1 + 2s) log(8/ε) if we redefine Jt̃=1,a := {j ∈
[p] : |Y1(j)| ≥ a}. All three terms in (40) can be controlled in the same way as when t0 ≥ 2 and this
completes the proof.

A.1.3 Proof of Theorem 5

We first prove the result for α ≥ 4.
Null term. For any θ ∈ Θ0(p, n), we have EθZt,g(j) = 0 and VarθZt,g(j) = Gt/t for every t ∈ T ,
g ∈ [Gt] and j ∈ [p]. Furthermore, from the class assumption E|Ei(j)|α ≤ Kα, for all i ∈ [n] and
j ∈ [p] and Jensen’s inequality, we deduce EEi(j)4 ≤ K4. We thus obtain, for all i ≤ n/2 and j ∈ [p]

EθZ4
i (j) = Eθ

[
Xi(j)−Xn−i(j)√

2

]4
=

Eθ
[
Ei(j)− En−i(j)

]4
4

≤ K4 + 3

2
=: C1. (48)

Then, by Chebyshev’s inequality (or, alternatively, Lemma 20) and Lemma 19(a), with rt = C2
√
pGt,

we have for all t ∈ T and g ∈ [Gt] that

Pθ
(
t

p∑
j=1

Vt,g(j) > rt

)
= Pθ

( p∑
j=1

(
Z

2
t,g(j)−

Gt
t

)
>
C2

√
pGt

t

)
≤
t2
∑p

j=1 EθZ
4
t,g(j)

C2
2pG

2
t

≤ 3pt2C1(Gt/t)
2

C2
2pG

2
t

≤ 3C1

C2
2

≤ ε/36, (49)

where C2 is chosen to satisfies C2 ≥
√
108C1ε−1. We denote

Bt :=
{
g ∈ [Gt] :

t

2

p∑
j=1

Vt,g(j) > rt

}
.

By (49) and the multiplicative Chernoff bound (e.g. Mitzenmacher and Upfal, 2017, Corollary 4.9),
we have for t ∈ T

Pθ(AMoM
t > rt) ≤ Pθ(|Bt| ≥ Gt/2) = Pθ

(
|Bt| ≥

εGt
36

(
1 +

(18
ε

− 1
)))

≤ exp

{
−εGt

36

(
18

ε
log
(18
ε

)
− 18

ε
+ 1

)}
≤ exp

{
−Gt

2
log
(
6/ε
)}
. (50)

Thus, by (49), (50), the choices of Gt and ∆ in (18) and a union bound, we conclude that

EθϕP,dense ≤ Pθ
( p∑
j=1

Vt=1,1(j) > rt=1

)
+

∑
t∈T : 2≤t≤∆

Pθ
(
AMoM
t > rt

)
+

∑
t∈T : t>∆

Pθ
(
AMoM
t > rt

)
≤ ε/36 +

∑
t∈T : 2≤t≤∆

(6/ε)−t/2 +
∑

t∈T : t>∆

(6/ε)−∆/2
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≤ ε/36 +
(6/ε)−1

1− (6/ε)−1
+ log2(n/2)(6/ε)

−∆/2 ≤ ε/36 + ε/5 + ε/5 < ε/2, (51)

for all θ ∈ Θ0(p, n).

Alternative term. We again follow the argument in the first paragraph of the alternative term
part of the proof of Theorem 1. In particular, recall that there exists a unique t̃ ∈ T such that
t0/2 < t̃ ≤ t0, where t0 (without loss of generality t0 ≤ n/2) is the true mean change location. For
all i ≤ n/2, we denote

Z ′
i := Zi −

µ1 − µ2√
2

=
(Xi − µ1)− (Xn+1−i − µ2)√

2
,

and correspondingly Z
′
t̃,g := Z t̃,g − (µ1 − µ2)/

√
2, for g ∈ [Gt̃]. It follows from the null term part

of the proof that EθZ
′
t̃,g(j) = 0, VarθZ

′
t̃,g(j) = Gt̃/t̃ and Eθ(Z ′

i(j))
4 ≤ C1, where C1 is as in (48).

When ρ2 ≥ 16C2
√
p∆, we have

2t̃∥µ1 − µ2∥2 ≥
t0(n− t0)

n
∥µ1 − µ2∥2 ≥ ρ2 ≥ 16C2

√
pGt̃ = 16rt̃,

since Gt̃ ≤ ∆. Thus, for all g ∈ [Gt̃], we have

Pθ
(
t̃

p∑
j=1

Vt̃,g(j) ≤ rt̃

)
= Pθ

(
p∑
j=1

((
Z

′
t̃,g(j) +

µ1(j)− µ2(j)√
2

)2

− Gt̃
t̃

)
≤ rt̃

t̃

)

= Pθ

(
p∑
j=1

((
Z

′
t̃,g(j)

)2 − Gt̃
t̃

+
√
2
(
µ1(j)− µ2(j)

)
Z

′
t̃,g(j)

)
≤ rt̃

t̃
− ∥µ1 − µ2∥22

2

)

≤ Pθ

(
p∑
j=1

((
Z

′
t̃,g(j)

)2 − Gt̃
t̃

+
√
2
(
µ1(j)− µ2(j)

)
Z

′
t̃,g(j)

)
≤ − ρ2

16t̃
− ∥µ1 − µ2∥22

4

)
. (52)

By Chebyshev’s inequality and Lemma 19(a), we obtain

Pθ
( p∑
j=1

((
Z

′
t̃,g(j)

)2 −Gt̃/t̃
)
≤ − ρ2

16t̃

)
≤

256(t̃)2
∑p

j=1 Eθ
(
Z

′
t̃,g(j)

)4
ρ4

≤
768C1pG

2
t̃

ρ4
, (53)

and

Pθ
( p∑
j=1

√
2
(
µ1(j)− µ2(j)

)
Z

′
t̃,g(j) ≤ −∥µ1 − µ2∥22

4

)
≤ 32Gt̃∥µ1 − µ2∥22/t̃

∥µ1 − µ2∥42
≤ 64Gt̃

ρ2
,

Combining these with (52), as long as

ρ2 ≥ max

{
16C2

√
p∆, 96

√
2C4

ε

√
p∆,

1536∆

ε

}
,

we are guaranteed

Pθ
(
t̃

p∑
j=1

Vt̃,g(j) ≤ rt̃

)
≤ ε/12.
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If t̃ = 1, then Gt̃ = 1 and we immediately have

Eθ(1− ϕP,dense) ≤ Pθ
(
AMoM
t̃

≤ rt̃
)
= Pθ

(
t̃

p∑
j=1

Vt̃,1(j) ≤ rt̃

)
≤ ε/12.

If t̃ ≥ 2, then Gt̃ ≥ 2 and we use the same binomial tail bound argument as in (50) to conclude that

Eθ(1− ϕP,dense) ≤ Pθ
(
AMoM
t̃

≤ rt̃
)
≤ exp

{
−εGt̃

12

(
6

ε
log
(6
ε

)
− 6

ε
+ 1

)}
≤
(2
ε

)−1
.

This completes the proof for α ≥ 4. We now consider the case α < 4. The proof is similar to above
and we essentially replace Chebyshev’s inequality wherever used by Lemma 20. We only highlight
the difference for brevity.
Null term. Note that for all t ∈ T and g ∈ [Gt], using Lemma 20 with k = α/2 < 2 and L = t/Gt,
we have with rt = C2p

2/αGt that

Pθ
(
t

p∑
j=1

Vt,g(j) > rt

)
= Pθ

(
t

Gt

p∑
j=1

(
Z

2
t,g(j)−

Gt
t

)
> C2p

2/α

)
≤ ε

36
, (54)

for C2 ≥ Cα/2(36/ε)
2/α, where Cα/2 > 0 is the constant depending on α and K from Lemma 20. By

substituting (49) with (54) and following the rest of the argument in the above proof, we prove that
EθϕP,dense ≤ ε/2 for all θ ∈ Θ0(p, n).

Alternative term. For all g ∈ [Gt̃], again using Lemma 20 with k = α/2 < 2 and L = t̃/Gt̃, we
have

Pθ
( p∑
j=1

((
Z

′
t̃,g(j)

)2 −Gt̃/t̃
)
≤ − ρ2

16t̃

)
= Pθ

(
t̃

Gt̃

p∑
j=1

((
Z

′
t̃,g(j)

)2 −Gt̃/t̃
)
≤ − ρ2

16Gt̃

)
≤ ε

24
, (55)

for ρ2 ≥ 24(2+α)/αCα/2ε
−2/αp2/α∆, where Cα/2 is, as above, a constant depending only on α and K.

By substituting (53) with (55) and following the rest of argument in the above proof, we prove that
as long as

ρ2 ≥ max

{
16C2p

2/α∆, 24(2+α)/αCα/2ε
−2/αp2/α∆,

1536∆

ε

}
,

we can control Eθ(1− ϕP,dense) ≤ ε/2.

A.1.4 Proof of Proposition 7

Null term. For any θ ∈ Θ0(p, n), we have by a union bound that

EθϕMoM
P,sparse ≤ Pθ(A1,a > r1) +

∑
t∈T \{1}

Pθ
(
AMoM
t,a > rt

)
. (56)

We first control the second term. Recall that Jt,a = {j ∈ [p] : |Yt,2(j)| ≥ a} for t ∈ T \ {1}. For
J ⊆ [p], we denote

AMoM
t,∗,J :=

t

2
·median

{∑
j∈J

(
Z

2
t,g,1(j)−

2Gt
t

)
: g ∈ [Gt]

}
.
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Note that AMoM
t,a = AMoM

t,∗,Jt,a
. Using the same technique as (34) in the proof of Theorem 3, we have∑

t∈T \{1}

Pθ(AMoM
t,a > rt) ≤

∑
t∈T \{1}

Pθ(|Jt,a| > s) +
∑

t∈T \{1}

sup
J⊆[p]:|J |≤s

Pθ(AMoM
t,∗,J > rt), (57)

where s is the sparsity. From the assumption that E|Ei(j)|α ≤ Kα, for all i ∈ [n] and j ∈ [p] and
Jensen’s inequality, we deduce that

Eθ|Zi(j)|α =
Eθ
∣∣Ei(j)− En−i(j)

∣∣α
2α/2

≤
Eθ
(
|Ei(j)|+ |En−i(j)|

)α
2α/2

≤ 2α/2Kα.

Then, by Fuk–Nagaev inequality (Proposition 16), we have

qt,a = Pθ(|Yt,2(j)| ≥ a) ≤ 2

(
(α+ 2)(Kα2α/2t/2)1/α

αa
√
t/2

)α
+ 2 exp

{
− 2a2

(α+ 2)2eα

}
.

≤ Kα

(a/3)αtα/2−1
+ exp

{
1− a2

2α2eα

}
, (58)

where we have used α ≥ 4 in the last inequality. Similar to (36), by a binomial tail bound, we have∑
t∈T \{1}

Pθ(|Jt,a| > s) ≤
∑

t∈T \{1}

(
epqt,a
s

)s
≤
(

2epKα

s(a/3)α

)s
+ log2(n)

(
2e2p

s

)s
exp

{
− sa2

2α2eα

}
. (59)

Thus, as long as we choose a to satisfy

a ≥ C1

(
ε−1(p/s)1/α + s−1/2 log1/2(ε−1 log(8n))

)
(60)

for some large enough C1 > 0, depending only on α and K, we are guaranteed that∑
t∈T \{1}

Pθ(|Jt,a| > s) ≤ ε

8
.

Furthermore, By setting rt = C2
√
sGt with a sufficently large C2 > 0 and ∆ = 24+⌈log2 log log(8n)⌉ and

by following the argument from (49) to (51), we can upper bound the second term in (57) at ε/8
as well. Finally, to control the first term in (56), by Proposition 17(b), whenever r1 ≥ C ′

1s(p/s)
2/α

for sufficiently large C ′
1 > 0, depending on α,K and ε, we have Pθ(A1,a > r1) ≤ ε/4. Hence, we

conclude that EθϕMoM
P,sparse ≤ ε/2 for all θ ∈ Θ0(p, n).

Alternative term. Recall the definitions of δ, Sδ and Hδ,a from the alternative term part of the
proof of Theorem 3:

δ =

√
t̃

2
(µ1 − µ2), Sδ = {j ∈ [p] : δ(j) ̸= 0}, Hδ,a = {j ∈ [p] : |δ(j)| ≥ 2a},

and the notation Z
′
t̃,g := Z t̃,g − (µ1 − µ2)/

√
2, for g ∈ [Gt̃] introduced at the start of the alternative

term part of the proof of Theorem 5. We first consider the case t0 ≥ 2, which implies t̃ ≥ 2. For
J ⊆ [p], we further denote

AMoM′
t,∗,J =

t

2
·median

{∑
j∈J

(
Z

2
t,g,1(j)−

(µ1(j)− µ2(j))
2

2
− 2Gt

t

)
: g ∈ [Gt]

}
.
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Observe that for g ∈ [Gt̃]∑
j∈Jt̃,a∩Hδ,a

(
Z

2
t̃,g,1(j)−

(µ1(j)− µ2(j))
2

2
− 2Gt̃

t̃

)
−
∑
j∈Jt̃,a

Vt̃,g,a(j)

= −

∑
j∈Jt̃,a∩Hδ,a

(µ1(j)− µ2(j))
2

2
+

∑
j∈Jt̃,a∩Hδ,a

Vt̃,g,a(j)−
∑
j∈Jt̃,a

Vt̃,g,a(j)

≤ −

∑
j∈Jt̃,a∩Hδ,a

(µ1(j)− µ2(j))
2

2
+

2Gt̃|Jt̃,a|
t̃

.

Then, on the event {|Jt̃,a| ≤ 2s} ∩
{∑

j∈Jt̃,a∩Hδ,a
δ(j)2 ≥ ∥δ∥22

12 log(8/ε)

}
, by Lemma 21, we deduce

AMoM′

t̃,∗,Jt̃,a∩Hδ,a
≤ AMoM

t̃,∗,Jt̃,a
− ∥δ∥22

12 log(8/ε)
+ 2sGt̃,

and consequently, when ρ2 ≥ 192C2s∆ log(8/ε), we have, with C2 ≥ 2, that

∥δ∥22
24 log(8/ε)

≥ C2s∆ ≥ max
t∈T \{1}

{rt + 2sGt},

where the first inequality is due to ∥δ∥22 ≥ ρ2/8 and the second inequality is due to the choice of
Gt = (t ∧∆)/2. Hence

Eθ(1− ϕMoM
P,sparse) ≤ Pθ

(
AMoM
t̃,a

≤ rt̃
)
= Pθ

(
AMoM
t̃,∗,Jt̃,a

≤ rt̃
)

≤ Pθ
(
|Jt̃,a| > 2s

)
+ Pθ

( ∑
j∈Jt̃,a∩Hδ,a

δ(j)2 <
∥δ∥22

12 log(8/ε)

)
+ Pθ

(
AMoM′

t̃,∗,Jt̃,a∩Hδ,a
≤ − ∥δ∥22

24 log(8/ε)

)
.

(61)

We control the three terms respectively. The arguments below mirror those made in the proof of
Theorem 3 between (41) and (47) and we will omit details in places where the same reasoning is
used in the last proof. First, it remains true that

Pθ
(
|Jt̃,a| > 2s

)
≤ ε/8.

For all j ∈ Hδ,a, We have by (58) and the choice a ≥ {41+1/αK} ∨ {3αeα/2} that

Pθ(|Yt̃,2(j)| < a) ≤ Kα(
(|δ(j)| − a)/3

)α + exp

{
1− (|δ(j)| − a)2

2α2eα

}
≤ 1/2,

and thus

Varθ
(
δ(j)21{|Yt̃,2(j)|≥a}

)
≤ δ(j)4Pθ(|Yt̃,2(j)| < a) ≤ (6K)α + 128α4e2α =: C3,

At this point, we consider

ρ2 ≥ C4max
{
192C2s∆ log2(8/ε), 64a2s, 192C3s, 3456K

2(16/ε)2/α log(8/ε), 768α2eα log2(16e/ε)
}
,
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with some C4 > 0. Then, by repeating the argument in (44), (45) and (46), as long as C4 ≥ 1, we
obtain

Pθ
( ∑
j∈Jt̃,a∩Hδ,a

δ(j)2 <
∥δ∥22

12 log(8/ε)

)
≤ ε/8.

We now bound the third and final term in (61). By Chebyshev’s inequality, we deduce that for
g ∈ [Gt]

P

(
t̃

2

∑
j∈Jt̃,a∩Hδ,a

(
Z

2
t̃,g,1(j)−

(µ1(j)− µ2(j))
2

2
− 2Gt̃

t̃

)
≤ − ∥δ∥22

24 log(8/ε)

)

≤

∑
j∈Hδ,a

Varθ

(
Z

2
t̃,g,1(j)

)
∥δ∥42/(144t̃2 log

2(8/ε))
≤

∑
j∈Hδ,a

2t̃2Varθ

((
Z

′
t̃,g,1(j)

)2)
+
∑

j∈Hδ,a
16t̃δ(j)2Varθ

(
Z

′
t̃,g,1(j)

)
∥δ∥42/(144 log

2(8/ε))

≤ C5 log
2(8/ε)

(
s∆2

ρ4
+

∆

ρ2

)
≤ ε/48,

when C4 ≥ 1 is sufficiently large. The third inequality above follows from (53) and C5 is a constant
depending only on α and K. If t̃ = 2, then Gt̃ = 1 and we immediately have

Pθ
(
AMoM′

t̃,∗,Jt̃,a∩Hδ,a
≤ − ∥δ∥22

24 log(8/ε)

)
≤ ε/48.

If t̃ > 2, then Gt̃ ≥ 2 and we again use the binomial tail bound argument as in (50) to obtain

Pθ
(
AMoM′

t̃,∗,Jt̃,a∩Hδ,a
≤ − ∥δ∥22

24 log(8/ε)

)
≤ exp

{
−εGt̃

48

(
24

ε
log
(24
ε

)
− 24

ε
+ 1

)}
≤ ε

8
.

By (61), we conclude Eθ(1 − ϕMoM
P,sparse) ≤ ε/2. Finally, for the case that the mean change happens

at t0 = 1 instead, similar to the last paragraph of the proof of Theorem 3, we can still control the
three terms in (61) in the same way respectively when we redefine Jt̃=1,a := {j ∈ [p] : |Y1(j)| ≥ a}
instead.

A.1.5 Proof of Proposition 8

We actually prove a more general result. Any mean estimator that satisfies the following condition
can be used in place of µ̂RSM

n,s,η(·) = µ̂RSM
n,s (·; η) introduced in Section 3.2 while Proposition 8 still holds.

Condition 1. Assume α ≥ 4. Let W1, . . . ,Wn be independent random vectors in Rp, each with
mean µW and covariance matrix Ip. Assume ∥µW ∥0 ≤ s and E|Wi(j) − µW (j)|α ≤ (

√
2K)α for

i ∈ [n] and j ∈ [p]. Then there exist constants C1, C2 ≥ 1, depending only on α and K such that for
any given 0 < η < 1, when n ≥ C1

(
s log(ep/s) + log(1/η)

)
, then with probability at least 1 − η, we

have ∥∥µ̂RSM
n,s (W1, . . . ,Wn; η)− µW

∥∥
2
≤
√
C2

(√
s log(ep/s)

n
+

√
log(1/η)

n

)
.

In particular, the robust sparse mean estimator that we use from Prasad et al. (2019) satisfies the
condition above as shown in Corollary 112 therein.

2Note that their result is under the assumption that for each vector v with ∥v∥2 = 1, E(v⊤(W − µW ))α ≤
C(E(v⊤(W − µW )2))α/2 for some absolute constant C, which is certainly satisfied by our assumption E|W (j) −
µW (j)|α ≤ (

√
2K)α for j ∈ [p] in Condition 1 with C = (

√
2K)α.
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In the result of the proof, we denote T̃1 := {t ∈ T : t ≤ ∆̃1}, T̃2 := {t ∈ T : ∆̃1 < t ≤ ∆̃2} and
T̃3 := {t ∈ T : t > ∆̃2} and recall that Jt,a = {j ∈ [p] : |Yt,2(j)| ≥ a} for t ∈ T \ {1}.

Null term. For θ ∈ Θ0(p, n), we have

EθϕRSM
P,sparse = Pθ(A1,a > r̃1) +

∑
t∈T̃1\{1}

Pθ(At,a > r̃t)

+
∑
t∈T̃2

Pθ(ARSM
t > rRSM

t ) +
∑
t∈T̃3

Pθ(ARSM
t > rRSM

t ). (62)

For the first term, similar to the proof of Theorem 3, by Proposition 17(b), when r̃1 ≥ C ′
4s(p/s)

2/α,
for some large enough C ′

4 > 0, depending only on α, K and ε, we have Pθ(A1,a > r̃1) ≤ ε/8. To
control the second term in (62), we closely follow the arguments in the null term part of the proof
of Theorem 3 and Proposition 7. By (34), we have

∑
t∈T̃1\{1}

Pθ(At,a > r̃t) ≤
∑

t∈T̃1\{1}

Pθ(|Jt,a| > s) +
∑

t∈T̃1\{1}

sup
J⊆[p]:|J |≤s

Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r̃t

)
. (63)

For the first term on the right hand side, by (59), we obtain

∑
t∈T̃1\{1}

Pθ(|Jt,a| > s) ≤
(

2epK

s(a/3)α

)s
+ log2(∆̃1)

(
2e2p

s

)s
exp

{
− sa2

2α2eα

}
.

The choice of a in (23) with a large enough constant C3 > 0 guarantees that
∑

t∈T̃1\{1} Pθ(|Jt,a| >
s) ≤ ε/16. For the second term, we fix J ⊆ [p] with |J | ≤ s. By the same technique as in (49), we
obtain

Pθ

(∑
j∈J

(
Y 2
t,1(j)− 1

)
> r̃t

)
≤ ε

16 log2(∆̃1)
,

when r̃t = C4

√
s log ∆̃1, for some large enough C4 > 0, depending only on α, K and ε. We thus

deduce that
∑

t∈T̃1\{1} Pθ(At,a > r̃t) ≤ ε/8.

Now, we control the third and fourth terms in (62). For t ∈ T̃2 ∪ T̃3, we observe that

C1

(
s log(ep/s) + log(1/ηt)

)
= min(t, ∆̃2) ≤ t.

Since Z1, . . . , Zt are independent and identically distributed random vectors with mean 0 and co-
variance matrix Ip and satisfy E|Zi(j)|α ≤ 2α/2Kα for i ∈ [t], j ∈ [p] under the null, by Condition 1,
we obtain

Pθ(ARSM
t > rRSM

t ) = Pθ
(
t
∥∥µ̂RSM

t,s,ηt

∥∥2
2
> 2C2

(
s log(ep/s) + log(1/ηt)

))
≤ ηt,

and therefore,∑
t∈T̃2

Pθ(ARSM
t > rRSM

t ) +
∑
t∈T̃3

Pθ(ARSM
t > rRSM

t ) ≤
∑
t∈T̃2

exp

{
s log(ep/s)− t

C1

}
+
∑
t∈T̃3

ε

16 log 2n
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≤ 2 exp

{
s log(ep/s)− ∆̃1

C1

}
+
ε log2(n/2)

16 log 2n
< ε/4,

(64)

where we use Lemma 18 in the second inequality. Hence, we conclude that EθϕRSM
P,sparse ≤ ε/2 for all

θ ∈ Θ0(p, n).

Alternative term. As in all previous proofs of alternative term, we consider the unique t̃ ∈ T ,
such that t0/2 ≤ t̃ ≤ t0, where t0(≤ n/2) is the true change point location. When t0 = 1, we simply
use the final paragraph of the proof of Proposition 7. When t0 ≥ 2, we consider separately the two
cases t̃ ∈ T̃1\{1} and t̃ ∈ T̃2 ∪ T̃3. When t̃ ∈ T̃1\{1}, the arguments are again almost the same as
those used in the alternative term part of the proof of Proposition 7. We thus omit the details and
directly state the conclusion: as long as

ρ2 ≥ C6max
{
(r̃1{t̸=1} + 2s) log2(8/ε), a2s, (1/ε)2/α log(8/ε)

}
,

for some large enough C6 > 0, depending only on α and K, we have Eθ(1 − ϕRSM
P,sparse) ≤ ε/2. Note

that if ρ2 ≥ C5v
U
P,sparse, for some large enough C5 > 0, depending only on α, K and ε, then the

above condition is satisfied.
If t̃ ∈ T̃2∪T̃3 instead, then Z1, . . . , Zt are independent and identically distributed random vectors

with mean (µ1−µ2)/
√
2 and covariance matrix Ip and satisfy E

∣∣Zi(j)− µ1(j)−µ2(j)√
2

∣∣α ≤ 2α/2K for i ∈
[t], j ∈ [p]. Recall that t̃∥µ1−µ2∥22 ≥ ρ2/2. Hence, when ρ2 ≥ 24C2

(
s log(ep/s)+ log(16 log(2n)/ε)

)
,

we have by Condition 1 that

Eθ(1− ϕRSM
P,sparse) = Pθ(ARSM

t̃,a
≤ rRSM

t̃
) = Pθ

(
t̃
∥∥µ̂RSM

t̃,s,ηt̃

∥∥2
2
≤ 2C2

(
s log(ep/s) + log(1/ηt̃)

))
≤ Pθ

(√
t̃

∣∣∣∣∥∥∥µ1 − µ2√
2

∥∥∥
2
−
∥∥∥µ̂RSM

t̃,s,ηt̃
− µ1 − µ2√

2

∥∥∥
2

∣∣∣∣ ≤√2C2

(√
s log(ep/s) +

√
log(1/ηt̃)

))
≤ Pθ

(√
t̃
∥∥∥µ̂RSM

t̃,s,ηt̃
− µ1 − µ2√

2

∥∥∥
2
>
√
C2

(√
s log(ep/s) +

√
log(1/ηt̃)

))
≤ ηt̃

≤ exp

{
s log(ep/s)− min(t, ∆̃2)

C1

}
≤ ε

16
,

as desired.

A.1.6 Proof of Theorem 9

We first consider the statistical property of ϕP,sparse. By comparing the two rates vU,MoM
P,sparse and

vUP,sparse, we note that the improvement offered by ϕRSM
P,sparse over ϕMoM

P,sparse only exists when

(p/s)2/α ≤ log log(8n),

since otherwise vU,MoM
P,sparse = vUP,sparse. Combining this with the fact that we are in the sparse regime

s ≤ p(α−4)/(2α−4), we deduce that p ≤ logα−2(log(8n)). The desired result is then an immediate
consequence of Proposition 7 and Proposition 8.

Now onto the computational complexity claim. For each t ∈ T , computing the statistics AMoM
t,a

and At,a in ϕ
MoM
P,sparse and ϕ

RSM
P,sparse take time polynomial in n and p since they only involve performing

basic operations and finding the median of Gt ≤ 8 log log(8n) quantities. The computationally
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demanding part lies in computing ARSM
t , or equivalently the robust sparse mean estimator µ̂RSM

t,s,ηt .

Note that we are using this only when p ≤ logα−2(log(8n)). For each fixed t, we claim that the
computation/approximation of µ̂RSM

t,s,ηt can be performed in time that is polynomial in n. We now
show this by arguing that each component below has time complexity that is polynomial in n. In
the rest of the proof, we omit the subscripts and adopt the notation µ̂RSM for clarity.

1. Each evaluation of the function 1DRobust(·) (cf. Prasad et al., 2019, Algorithm 2) of t data
point requires time of order t log t ≤ n log n (in order to find the shortest interval).

2. The total number of projection |N 1/2
2s (Sp−1)| can be bounded by |N 1/2

2s (Sp−1)| ≤ (6ep/s)s ≤
(6ep)p ≤ exp(6ep2) ≤ exp(Cα log(n)) = nCα for some constant Cα > 0, depending only on α.
Denote

g(µ) := max
u∈N 1/2

2s (Sp−1)

|u⊤µ− 1DRobust({u⊤Zi}ti=1, ηt/(6ep/s)
s)|.

Thus for a fixed µ ∈ Rp, the computational complexity of evaluating g(µ) is polynomial in n.

3. The optimisation problem defining µ̂RSM can be written as

min
µ∈Ls

g(µ).

We solve this by first considering each possible s-sparsity coordinate pattern individually before
working out the minimum among these

(
p
s

)
≤ nCα minima.

4. Fix U ⊆ Rp with |U| = s. We solve the optimisation problem

min
µ∈Rp:µ(j)=0∀j∈Uc

g(µ)

by subgradient descent. Denote the optimal value to be g∗,U and the k-th iterate to be

µ
(k)
U . Note that g(µ) is 1-Lipschitz and ∂g(µ) ⊆

{
±u : u ∈ N 1/2

2s (Sp−1)
}
. Standard result

on the convergence of subgradient descent (e.g. Nesterov, 2003, Theorem 3.2.2) shows that(
mink∈[K] g

(
µ
(k)
U
))

− g∗,U ≤ υ in K ≍ 1/υ2 steps, where we choose υ =
√
s log(ep/s)t−1. The

computational complexity is again at most polynomial in n. Denote µ̃RSM
U to be the update

that attains the best objective value in K iterations.

Write
µ̃RSM := argmin

µ∈
{
µ̃RSM
U : |U|=s

} g(µ),
as our final estimator (an approximation of µ̂RSM). We have now shown that µ̃RSM can be obtained
in time that is polynomial in n. Finally, we prove that µ̃RSM still satisfies Condition 1. Indeed,
following the proof of Lemma 4 and Corollary 12 in Prasad et al. (2019), we have

∥µ̃RSM − µZ∥2 ≤ ∥µ̃RSM − µ̂RSM∥2 + ∥µ̂RSM − µZ∥2 ≤ g
(
µ̃RSM

)
+ g
(
µ̂RSM

)
+ g
(
µ̂RSM

)
+ g(µZ)

≤ g
(
µ̂RSM

)
+ υ + 2g

(
µ̂RSM

)
+ g(µZ) ≤ υ + 4g(µZ)

≤
√
C

(√
s log(ep/s)

t
+

√
log(1/ηt)

t

)
,

for some C ≥ 1, where µZ = EZ1.
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A.2 Proof of the adaptation result in Section 4

Proof of Theorem 11. This proof is based on the proofs of Theorem 5, Propositions 7, 8. For brevity,
we only highlight the main steps and differences.
Null term. By a union bound, (56) and (62), we have

EθϕP,adaptive

≤ EθϕP,dense + Eθ
[
max
s∈K

ϕMoM
P,sparse,s

]
1{p>logα−2(log(8n))} + Eθ

[
max
s∈K

ϕRSM
P,sparse,s

]
1{p≤logα−2(log(8n))}

≤ EθϕP,dense +

(
Pθ
(
max
s∈K

A1,as,s

r1,s
> 1

)
+
∑
s∈K

∑
t∈T \{1}

Pθ
(
AMoM
t,as,s > rt,s

))
1{p>logα−2(log(8n))}

+

(
Pθ
(
max
s∈K

A1,as,s

r̃1,s
> 1

)
+
∑
s∈K

∑
t∈T̃1,s\{1}

Pθ(At,as,s > r̃t,s)

+
∑
s∈K

∑
t∈T̃2,s

Pθ(ARSM
t,s > rRSM

t,s ) +
∑
s∈K

∑
t∈T̃3,s

Pθ(ARSM
t,s > rRSM

t,s )

)
1{p≤logα−2(log(8n))}

≤ EθϕP,dense + Pθ
(
max
s∈K

A1,as,s

r1,s ∧ r̃1,s
> 1

)
+
∑
s∈K

∑
t∈T \{1}

Pθ
(
AMoM
t,as,s > rt,s

)
+
∑
s∈K

∑
t∈T̃1,s\{1}

Pθ(At,as,s > r̃t,s) +
∑
s∈K

( ∑
t∈T̃2,s

Pθ(ARSM
t,s > rRSM

t,s ) +
∑
t∈T̃3,s

Pθ(ARSM
t,s > rRSM

t,s )

)
,

(65)

where we denote T̃1,s := {t ∈ T : t ≤ ∆̃1,s}, T̃2,s := {t ∈ T : ∆̃1,s < t ≤ ∆̃2,s} and T̃3,s := {t ∈ T :
t > ∆̃2,s}. In the following, we bound each of the five terms in (65) by ε/10.
Term 1. By closely following the null term part of the proof of Theorem 5, with a sufficiently large
constant C1, we deduce, similar to (51), that

EθϕP,dense ≤ ε/180 +
(32/ε)−1

1− (32/ε)−1
+ log2(n/2)(32/ε)

−∆/2 ≤ ε/180 + ε/31 + ε/31 < ε/10.

Term 2. By having C3 and C5 sufficiently large, by Proposition 17(c), we can control this term at
level ε/10.
Term 3. For this, we follow the null term part of the proof of Proposition 7. The key step in
that proof was to bound both terms in (57). The first term can be controlled via (59). A careful
inspection reveals that the condition on a (same as as here) given in (60) with a possibly larger value
of the leading constant can guarantee the control of both terms in (59) at ε/(160s1/2). Bounding
the second term in (57) required the argument from (49) to (51), within which the dimension p was
replaced by s. Our new choice of rt,s = C3s

3/4Gt for t > 1 with a sufficiently large C3 allows us to
have ε/(1100s1/2) as the RHS bound in (49) (dimension being s). Correspondingly, the RHS of (50)
now becomes

exp

{
− εGt
1100

√
s

(
550

√
s

ε
log
(550√s

ε

)
− 550

√
s

ε
+ 1

)}
≤ exp

{
−Gt

2
log
(
200

√
s/ε
)}
.

Thus, The second term in (57) can now be bounded instead by

ε

1100
√
s
+

(200
√
s/ε)−1

1− (200
√
s/ε)−1

+ log2(n/2)(200
√
s/ε)−∆/4 ≤ ε

1100
√
s
+

ε

199
√
s
+

ε

199
√
s
<

ε

80
√
s
.
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Putting everything together, we conclude that∑
s∈K

∑
t∈T \{1}

Pθ
(
AMoM
t,as,s > rt,s

)
≤
∑
s∈K

ε

40
√
s
<

ε

10
.

Term 4. We follow the null term part of the proof of Proposition 8. More specifically, this term
can be split into two terms according to (63). Similar to the argument made for the second term
above, with C4 sufficiently large, the first term in (63) can be guaranteed to be at most ε/(80s1/2).
The second term, with the new choice of r̃t,s and its leading constant C5 being sufficiently large, can
also be bounded above by

ε|T̃1,s\{1}|
80
√
s log2(∆̃1,s)

≤ ε/(80s1/2).

Therefore, we can again control the fourth term at level ε/10.
Term 5. We again follow the null term part of the proof of Proposition 8. By Condition 1 and
similar to (64), we can now bound

∑
s∈K

( ∑
t∈T̃2,s

Pθ(ARSM
t,s > rRSM

t,s ) +
∑
t∈T̃3,s

Pθ(ARSM
t,s > rRSM

t,s )

)

≤
∑
s∈K

( ∑
t∈T̃2,s

exp

{
s log(ep/s)− t

C6

}
+
∑
t∈T̃3,s

exp

{
s log(ep/s)− ∆̃2,s

C6

})

≤
∑
s∈K

(
2 exp

{
s log(ep/s)− ∆̃1,s

C6

}
+ log2(n/2)

ε

80s log n

)
<
∑
s∈K

ε

20s
≤ ε

10
,

as desired.

Alternative term. First, let s1 satisfy s1(p/s1)
2/α + log log(8n) =

√
p log log(8n) and s2 satisfy

s2
(
(p/s2)

2/α + log log(8n)
)
=

√
p log log(8n). Note that s1 ≥ s2. For θ ∈ Θ(p, n, s, ρ), we consider

all four possible (p, s) regimes below.
(1) p > logα−2(log(8n)) and s ≥ s2/2. We have Eθ(1 − ϕP,adaptive) ≤ Eθ(1 − ϕP,dense). By the
alternative term part of the proof of Theorem 5, we can bound the above quantity by ε/2 as long as
ρ2 ≥ C ′√p log log(8n) with a sufficiently large C ′. We also note that when s2/2 ≤ s < s2, we have

1

2

√
p log log(8n) ≤ s

(
(p/s)2/α + log log(8n)

)
≤ √

p log log(8n).

(2) p > logα−2(log(8n)) and s < s2/2. By the definition of K, there exists an s̃ ∈ K such that
s ≤ s̃ < 2s. We have Eθ(1 − ϕP,adaptive) ≤ Eθ(1 − ϕMoM

P,sparse,s̃). Now, by carefully inspecting the

alternative term part of the proof of Proposition 7, we can still deduce Eθ(1 − ϕMoM
P,sparse,s̃) ≤ ε/2 as

long as ρ satisfies

ρ2 ≥ C ′
(
s
(
(p/s)2/α + log log(8n)

))
≥ C ′

2

(
s̃
(
(p/s̃)2/α + log log(8n)

))
≥ C ′′max

{
log2(8/ε) max

t∈T \{1}
(rt,s̃ + 2s̃Gt), (r1,s̃ + 2s̃) log2(8/ε), a2s̃ s̃

}
, (66)

for sufficiently large C ′ and C ′′, where the final inequality in (66) remains true with our modified
choice of rt,s.
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(3) p ≤ logα−2(log(8n)) and s ≥ s1/2. We use the same argument as in (1) to obtain the same
condition ρ2 ≥ C ′√p log log(8n). Similarly, we also note that when s1/2 ≤ s < s1, we have

1

2

√
p log log(8n) ≤ s(p/s)2/α + log log(8n) ≤ √

p log log(8n).

(4) p ≤ logα−2(log(8n)) and s < s1/2. Similar to (2), we have Eθ(1−ϕP,adaptive) ≤ Eθ(1−ϕRSM
P,sparse,s̃).

By carefully examining the alternative term part of the proof of Proposition 8, we can obtain
Eθ(1− ϕRSM

P,sparse,s̃) ≤ ε/2 as long as

ρ2 ≥ C ′(s(p/s)2/α + log log(8n)
)
≥ C ′

2

(
s̃(p/s̃)2/α + log log(8n)

)
≥ C ′′max

{
(r̃t̸=1,s̃ + 2s̃) log2(8/ε), (r̃1,s̃ + 2s̃) log2(8/ε), a2s̃ s̃, s̃ log(ep/s̃) + log log(8n)

}
, (67)

for sufficiently large C ′ and C ′′, where the final inequality in (67) remains true with our new choices
of as and r̃t,s.

The desired result then follows from Theorem 9 and the first part of its proof.

A.3 Proofs of lower bound results

In this section, we prove all lower bound results presented in the paper, namely Propositions 2, 4, 6
and 10. Throughout the proof, we use Pθ,Ξ to denote the probability distribution of X ∈ Rp×n that
satisfies X − θ ∼ Ξ, and Eθ,Ξ the corresponding expectation under this distribution. It suffices to
prove the five claims below, as they immediately imply all the lower bound results in the paper.

(i). log log(8n), for G⊗
α,K with 0 < α ≤ 2 and K ≥ 21+2/α and for P⊗

α,K with α > 2 and K ≥
√
α+ 1

or α = 2 and K ≥ 1;

(ii).
√
p log log(8n) when s ≥

√
p log log(8n), for G⊗

α,K with 0 < α ≤ 2 and K ≥ 21+2/α and for

P⊗
α,K with α > 2 and K ≥

√
α+ 1 or α = 2 and K ≥ 1;

(iii). p2/α when s ≥ 30, for P⊗
α,K with α > 2 and K ≥

√
2 or α = 2 and K ≥ 1;

(iv). s(p/s)2/α when 30 ≤ s ≤ p
α−4
2α−4 , for P⊗

α,K with α ≥ 4 and K ≥
√
2;

(v). s log2/α(ep/s) when 30 ≤ s ≤ √
p log−2/α(ep), for G⊗

α,K with 0 < α ≤ 2 and K ≥ 21+2/α.

(i). We first consider that each entry of the noise matrix E follows an independent standard normal
distribution. Then for 0 < α ≤ 2, i ∈ [n], j ∈ [p] and x ≥ 21+2/α, we have

E

[
exp

{(
|Ei(j)|
x

)α}]
= E

[
exp

{(
|Ei(j)|
x

)α}
1{|Ei(j)|≥2}

]
+ E

[
exp

{(
|Ei(j)|
x

)α}
1{|Ei(j)|<2}

]

≤ E

[
exp

{(
|Ei(j)|

2

)2}
1{|Ei(j)|≥2}

]
+ exp

{
(2/x)α

}
=

√
2− E

[
exp

{(
|Ei(j)|

2

)2}
1{|Ei(j)|<2}

]
+ exp

{
(2/x)α

}
≤

√
2−

(
1− exp(−2)

)
+ exp

{
(2/x)α

}
< 2,
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where the penultimate inequality follows from the standard Gaussian tail bound. Thus, for any
K ≥ 21+2/α, we have ∥Ei(j)∥ψα ≤ K. Furthermore, by Jensen’s inequality, we obtain for α > 2

E|Ei(j)|α ≤
{
E|Ei(j)|2⌈α/2⌉

} α/2
⌈α/2⌉

=

{⌈α/2⌉∏
i=1

(2i− 1)

} α/2
⌈α/2⌉

≤
(
2⌈α/2⌉ − 1

)α/2 ≤ (α+ 1)α/2.

Therefore Pe ∈ G⊗
α,K for all 0 < α ≤ 2 and K ≥ 21+α/2 and Pe ∈ P⊗

α,K for all α ≥ 2 and K ≥
√
α+ 1

or α = 2 and K ≥ 1. For the mean vectors µ1 and µ2 in the definition of Θ(t0)(p, n, s, ρ), we restrict
them to be equal in all coordinates except perhaps the first. Then under this setting, the lower
bound log log(8n) of the detection rate is established in Gao et al. (2020, Proposition 4.2). Note
that this lower bound holds for all 1 ≤ s ≤ p.

(ii). When s ≥
√
p log log(8n), we again consider the independent standard normal noise structure.

The lower bound
√
p log log(8n) is shown in Liu et al. (2021, Proposition 3).

We now use a unified approach to establish the three remaining rates. Let ξ and ξ̃ be two
independent random variables on R, whose distributions are to be specified later; let ω̃ be an discrete
random variable (independent of ξ, ξ̃), taking values

ω̃ =


+1 w.p. s

4p

(
1 + γ2s

2p

)−1

−1 w.p. s
4p

(
1 + γ2s

2p

)−1

0 otherwise,

(68)

where γ > 0 is also to be specified later; let π̃ := ξ̃ + γω̃. We remark that ω̃ can be viewed
as a Rademacher random variable being multiplied by a Bernoulli random variable. Denote ξ :=

(ξ(1), . . . , ξ(p))⊤ ∈ Rp, where the coordinates are i.i.d. copies of ξ and we use similar notations
ξ̃, ω̃, π̃. Let ν denote the distribution of γω̃ ∈ Rp, and ν̄ the distribution restricted to Vs := {v ∈
Rp : s/6 ≤ ∥v∥0 ≤ s}, i.e. ν̄(A) = ν(A∩Vs)

ν(Vs)
for any Borel set A ⊆ Rp. Consequently, the support of

this restricted measure satisfies

supp(ν̄) ⊆
{
v ∈ Rp : ∥v∥0 ≤ s, ∥v∥22 ≥ sγ2/6

}
. (69)

We also have

−ν(Vcs) = −
( 1

ν(Vs)
− 1
)
ν(Vs) ≤ ν(A)− ν̄(A) = ν(A ∩ Vcs)−

( 1

ν(Vs)
− 1
)
ν(A ∩ Vs) ≤ ν(Vcs). (70)

for any Borel set A. Denote Ξ∗ to be the distribution of (ξ,R2, . . . , Rn) ∈ Rp×n, Ξ̃∗ the distri-

bution of (ξ̃, R2, . . . , Rn), and Π̃ the distribution of (π̃, R2, . . . , Rn), where (Ri(j))i∈{2,...,n},j∈[p] are

i.i.d. Rademacher random variables, independent of ξ, ξ̃, π̃. Now we consider the following mixture
measures:

P̄∗ :=

∫
Pθ(1),Ξ∗ ν̄(dθ1), P∗ :=

∫
Pθ(1),Ξ∗ ν(dθ1), and P̃∗ :=

∫
Pθ(1),Ξ̃∗ ν(dθ1),

where θ(1) := (θ1, 0, . . . , 0) ∈ Rp×n. Observe that P̃∗ = P0,Π̃, as both sides represent the distribution
of (π̃, R2, . . . , Rn). We first provide an upper bound on the total variation distance between P∗ and
P̄∗. By (70), we have

TV(P∗, P̄∗) ≤ TV(ν, ν̄) = sup
A

|ν(A)− ν̄(A)| ≤ ν(Vcs) = P
(
∥ω̃∥0 > s

)
+ P

(
∥ω̃∥0 < s/6

)
. (71)
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Suppose γ is chosen to satisfy γ ≤
√
p/s. Then from (68), we deduce s

3p ≤ P(ω̃(1) ̸= 0) < s
2p . By

Chernoff bounds, we have

P
(
∥ω̃∥0 > s

)
≤

E
[
e∥ω̃∥0 log 2

]
es log 2

≤
(
1 + s/(2p)

)p
es log 2

≤ e−s/6,

P
(
∥ω̃∥0 < s/6

)
≤

E
[
e−∥ω̃∥0 log 2

]
e−(s log 2)/6

≤
(
1− s/(6p)

)p
e−(s log 2)/6

≤ e−s/20. (72)

The key step of the proof is to carefully construct two random variables ξ and ξ̃ such that the
following three conditions are satisfied:

Ξ∗ ∈ Gα,K (resp. Pα,K), (73)

Π̃ ∈ Gα,K (resp. Pα,K), (74)

H2(Pξ, Pξ̃) ≤
1

16p
, (75)

where, in a slight abuse of notation, we denote Pξ and Pξ̃ to be the distribution of ξ and ξ̃ respectively.
Then, by data processing inequality as well as some basic properties of the total variation distance
and the Hellinger distance, we obtain

TV(P̃∗,P∗) ≤ TV(P0,Ξ̃∗ , P0,Ξ∗) ≤ TV
(
Pξ̃, Pξ

)
≤ H

(
Pξ̃, Pξ

)
=
√
2
(
1− (1−H2(Pξ̃, Pξ)/2)

p
)

≤
√
pH2(Pξ, Pξ̃) ≤ 1/4, (76)

where the penultimate inequality follows from the fact that (1− x)p ≥ 1− px for all 0 ≤ x ≤ 1 and
p ≥ 1. Combining (69), (71), (72), and (76), when s ≥ 30, for all ρ2 ≤ sγ2/12, we have

RQ(ρ) = inf
ϕ∈Φ

{
sup
Pe∈Q

sup
θ∈Θ0(p,n)

Eθ,Peϕ+ sup
Pe∈Q

sup
θ∈Θ(p,n,s,ρ)

Eθ,Pe(1− ϕ)

}
≥ 1− TV(P0,Π̃, P̄

∗) = 1− TV(P̃∗, P̄∗) ≥ 1− TV(P̃∗,P∗)− TV(P∗, P̄∗)

≥ 3/4− e−s/6 − e−s/20 ≥ 1/2,

where the class Q is either G⊗
α,K or P⊗

α,K . Below, we give three constructions of ξ and ξ̃ that
satisfy conditions (73), (74) and (75), and specify the corresponding choices of γ. Each construction
corresponds to a rate given at the beginning of the proof.
(iii). We work within the noise distribution class P⊗

α,K with α > 2 and K ≥
√
2 or α = 2 and K ≥ 1

and we only consider s = 30 (a constant) in this construction. Let ξ and ξ̃ be two independent
discrete random variables such that

ξ̃ =

{(
1 + γ2s

2p

)−1/2
w.p. 1/2

−
(
1 + γ2s

2p

)−1/2
w.p. 1/2

and ξ =



(
1 + γ2s

2p

)−1/2
w.p.

t20−1

2

(
t20−
(
1+ γ2s

2p

)−1
)

−
(
1 + γ2s

2p

)−1/2
w.p.

t20−1

2

(
t20−
(
1+ γ2s

2p

)−1
)

t0 w.p.
1−
(
1+ γ2s

2p

)−1

2

(
t20−
(
1+ γ2s

2p

)−1
)

−t0 w.p.
1−
(
1+ γ2s

2p

)−1

2

(
t20−
(
1+ γ2s

2p

)−1
) .
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Direct calculations show that both ξ and ξ̃ + γω̃ have mean 0 and variance 1. Choose

γ = max

{
−1 +

{
(Kα − 1)p/s

}1/α
max{32,K}

,

√
2

32

}
and t0 = 32γ ≥

√
2.

Note that we have γ ≤
√
p/s. Now, to check (73) and (74), it suffices to only verify that E|ξ|α ≤ Kα

and that E
∣∣ξ̃ + γω̃

∣∣α ≤ Kα respectively. Indeed, as α > 2 and K ≥
√
2, we have

E|ξ|α ≤ 1 + tα0
1−

(
1 + γ2s

2p

)−1

t20 −
(
1 + γ2s

2p

)−1 ≤ 1 + tα0
γ2s/(2p)

t20 − 1
= 1 +

γ2stα−2
0

p
≤ 1 +

32α−2γαs

p

≤ 1 + max

{
Kα − 1, 2α/2−10

}
≤ Kα,

and

E
∣∣ξ̃ + γω̃

∣∣α ≤ 1 + (1 + γ)α · P(ω̃ ̸= 0) ≤ 1 +
(1 + γ)αs

2p
≤ 1 + max

{
Kα − 1,

(17/16)α

2

}
≤ Kα.

We also verify (75):

H2(Pξ, Pξ̃) =

(
1−

√√√√ t20 − 1

t20 −
(
1 + γ2s

2p

)−1

)2

+
1−

(
1 + γ2s

2p

)−1

t20 −
(
1 + γ2s

2p

)−1 ≤
2
(
1−

(
1 + γ2s

2p

)−1)
t20 −

(
1 + γ2s

2p

)−1

≤ 2γ2s

pt20
=

60γ2

(32γ)2p
≤ 1

16p
.

We thus conclude that under the noise distribution class P⊗
α,K with α > 2 and K ≥

√
2, whenever

s ≥ 30 and

ρ2 ≤ 30

12

(
max

{
−1 +

{
(Kα − 1)p/30

}1/α
max{32,K}

,

√
2

32

})2

≤ c · p2/α,

for some c > 0 depending only on α and K, we have RP(ρ) ≥ 1/2. When α = 2, we can simply set
γ =

√
p/s and t0 = 32γ and reach the same conclusion.

(iv). We work within the noise distribution class P⊗
α,K with α ≥ 4 and K ≥

√
2. We first define an

auxiliary random variable ξaux and with the following density elsewhere:

fξaux(x) =


1000(x− sgn(x) · 0.9)2 0.9 ≤ |x| < 0.95

5− 1000(x− sgn(x))2 0.95 ≤ |x| ≤ 1.05

1000(x− sgn(x) · 1.1)2 1.05 < |x| ≤ 1.1

0 otherwise.

Observe that Eξaux = 0 and σ2aux := Eξ2aux ∈ (1, 1.01). Now let ξ and ξ̃ be independent random

variables such that ξ
d
= σ−1

auxξaux and ξ̃
d
=
(
1 + γ2s

2p

)−1/2
σ−1
auxξaux. Again, direct calculations show

that both ξ and ξ̃ + γω̃ have mean 0 and variance 1. For condition (73), since |ξ| < 1.1 holds with
probability one, we have Ξ∗ ∈ Pα,K for all α ≥ 4 and K ≥

√
2. We choose

γ =
1

12
(p/s)1/α.
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Note that γ ≤
√
p/s. We verify (74) as follows:

E
∣∣ξ̃ + γω̃

∣∣α ≤ 1.1α + (1.1 + γ)α · P(ω̃ ̸= 0) ≤ 1.1α +
(1.1 + γ)αs

2p
≤ 1.1α +

max{1.2, 12γ}αs
2p

≤ max

{
1.1α +

1.2α

2
, 1.1α +

1

2

}
≤ 2α/2 ≤ Kα. (77)

Finally, by Ibragimov and Has’ Minskii (2013, Theorem 7.6), we have when s ≤ p
α−4
2α−4

H2(Pξ, Pξ̃) ≤

(
σ−1
aux −

(
1 + γ2s

2p

)−1/2
σ−1
aux

)2
4

sup

u∈
[(

1+ γ2s
2p

)−1/2
σ−1
aux,σ

−1
aux

]
∫
supp(ξaux)

(
f ′ξaux(x)

)2
/fξaux(x) dx

u2

≤

((
1 + γ2s

2p

)1/2 − 1
)2

4

∫
supp(ξaux)

(
f ′ξaux(x)

)2
/fξaux(x) dx

≤ γ4s2

64p2
· 4
(∫ 0.05

0

(−2000x)2

5− 1000x2
dx+

∫ 0.1

0.05

(2000(x− 0.1))2

1000(x− 0.1)2
dx

)
≤ 25γ4s2

p2
≤ 1

16p
, (78)

and this verifies (75). Therefore, under the noise distribution class P⊗
α,K with α ≥ 4 and K ≥

√
2,

whenever 30 ≤ s ≤ p
α−4
2α−4 and ρ2 ≤ s(p/s)2/α/1728, we have RP(ρ) ≥ 1/2.

(v). We work within the noise distribution class G⊗
α,K with 0 < α ≤ 2 and K ≥ 21+2/α. We use the

same construction as in (iv), but now choose instead

γ =
1

3 · (8/α)1/α
log1/α(ep/s).

Since log x ≤ 2
eαx

α/2 for all x ≥ e, we can verify that γ ≤
√
p/s. Again, for condition (73),

since |ξ| < 1.1 holds with probability one, we have Ξ∗ ∈ Gα,K for all α ≥ 4 and K ≥ 21+2/α, as
exp{(1.1/K)α} ≤ e1/4 < 2. We now verify (74) using the technique in (77):

E

[
exp

{(
|ξ̃ + γω̃|
K

)α}]
≤ exp

{(
1.1

K

)α}
+

s

2p
exp

{(
max{2, 3γ}

K

)α}

≤ e1/4 +max

{
e1/4

s

2p
,
( s
2p

)1− 2α
8Kα

}
≤ e1/4 +max

{
e1/4/2,

√
1/2
}
< 2.

We then follow (78) to verify (75) as well:

H2(Pξ, Pξ̃) ≤
25γ4s2

p2
≤ 1

16p
,

when s ≤ √
p log−2/α(ep). Therefore, under the noise distribution class G⊗

α,K with α ≤ 2 and

K ≥ 21+2/α, whenever 30 ≤ s ≤ √
p log−2/α(ep) and ρ2 ≤ s log2/α(ep/s)

36·(8/α)1/α , we have RG(ρ) ≥ 1/2.
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B Auxiliary results

We first present the definition and some basic properties of sub-Weibull random variables. For a
more in-depth introduction and discussion, we refer to Vladimirova et al. (2020) and Kuchibhotla
and Chakrabortty (2022, Section 2).

Definition 4 (Orlicz norms). Let f : [0,∞) → [0,∞) be a non-decreasing function with f(0) = 0.
The f -Orlicz norm of a real-valued random variable X is

∥X∥f := inf{t > 0 : Ef(|X|/t) ≤ 1}.

Definition 5 (sub-Weibull random variables). A random variable X is sub-Weibull of order α > 0,
denoted sub-Weibull(α), if it has mean zero and

∥X∥ψα <∞,

with the function ψα defined by ψα(x) := exp(xα)− 1 for x ≥ 0.

Proposition 12 (Vladimirova et al., 2020, Theorem 2.1). Let X be a sub-Weibull(α) random vari-
able with 0 < α ≤ 2 and ∥X∥ψα = K <∞. Then, we have the following properties:
(a) the tails of X satisfy

P(|X| ≥ x) ≤ 2 exp{−(x/K)α} for all x ≥ 0;

(b) Let ∥X∥k := E(|X|k)1/k, k ≥ 1, then

∥X∥k ≤ K ′k1/α

for some absolute constant K ′ > 0.
(c) Conversely, if a random variable X has mean zero and satisfies P(|X| ≥ x) ≤ 2 exp{−(x/K)α}
for all x ≥ 0, then there exists K ′′ > 0, depending only on α and K, such that

E exp
{
(|X|/K ′′)α

}
≤ 2.

In other words, X is a sub-Weibull(α) random variable with ∥X∥ψα ≤ K ′′ <∞.

Proposition 13 (Vladimirova et al., 2020, Proposition 2.1). Let α > α′ > 0 and X be a sub-
Weibull(α) random variable with ∥X∥ψα = K <∞. Then there exists K ′ > 0, depending only on α′

and K, such that X is a sub-Weibull(α′) random variable with ∥X∥ψα′ ≤ K ′ <∞.

We now provide two tail bound results from literature for sums and quadratic forms of indepen-
dent sub-Weibull random variables respectively. Proposition 15 below can be viewed as an extension
of the Hanson–Wright inequality (Hanson and Wright, 1971).

Proposition 14 (Kuchibhotla and Chakrabortty, 2022, Theorem 3.1). Let α > 0 and n ∈ N. Let
X1, . . . , Xn be independent mean zero sub-Weibull random variables of order α, with ∥Xi∥ψα ≤ K
for all i ∈ N and for some K > 0. Then, there exists a constant C > 0, depending only on α and
K, such that for any vector u = (u1, . . . , un)

⊤ ∈ Rn and x ≥ 0, we have

P
(∣∣∣ n∑

i=1

uiXi

∣∣∣ ≥ x
)
≤ exp

{
1−min

{(
x

C∥u∥2

)2

,

(
x

C∥u∥β(α)

)α}}
,

where β(α) = ∞ when α ≤ 1 and β(α) = α/(α− 1) when α > 1.
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Proposition 15 (Götze et al., 2021, Proposition 1.5). Let α ∈ (0, 1] ∪ {2}, A = (aij) ∈ Rn×n be a
symmetric matrix and X1, . . . , Xn be independent mean zero sub-Weibull random variables of order
α, with EX2

i = σ2i and ∥Xi∥ψα ≤ K for all i ∈ N and for some K > 0. Then, there exists a constant
C > 0, depending only on α and K, such that for any x ≥ 0, we have

P
(∣∣∣ ∑

1≤i,j≤n
aijXiXj −

n∑
i=1

aiiσ
2
i

∣∣∣ ≥ x

)
≤ exp

(
1− ηα(x/C;A)

)
,

where

ηα(x;A) := min

{(
x

∥A∥F

)2

,
x

∥A∥2
,

(
x

∥A∥2→∞

) 2α
2+α

,

(
x

∥A∥max

)α
2

}
.

The following proposition presents a concentration inequality for sums of independent random
variables with only finite certain number of moments. We use the form of the Fuk–Nagaev type
inequalities appeared in Rio (2017).

Proposition 16 (Fuk, 1973; Nagaev, 1979). Let X1, . . . , Xn be independent random variables, each
having mean 0 and variance σ2. Assume further that for some q ≥ 2 and Cq > 0, we have for all
i ∈ [n]

E[{max(Xi, 0)}q] ≤ Cq.

Then for any x > 0, we have

P
( n∑
i=1

Xi ≥ x

)
≤

(
(q + 2)(nCq)

1/q

qx

)q
+ exp

{
− 2x2

n(q + 2)2eqσ2

}
.

Proposition 17. Let X1, . . . , Xp be independent random variables, each with mean zero and unit
variance. Let a ≥ 0 and Z :=

∑p
i=1(X

2
i − 1)1{|Xi|≥a}.

(a) Let α > 0, K > 0, 0 < ε ≤ 1 and 1 ≤ s ≤ √
p. Assume that X1, . . . , Xp are independent

sub-Weibull random variables of order α, with ∥Xi∥ψα ≤ K for all i ∈ [p]. By setting

a ≥ K log1/α
(4ep
εs

)
and r = 22/αK2s log2/α

( 4p√
εs

)
,

we have P(Z > r) ≤ ε.
(b) Let α ≥ 2, K > 0, 0 < ε ≤ 1 and 1 ≤ s ≤ p. Assume that E|Xi/K|α ≤ 1 for all i ∈ [p]. By
setting

a ≥ K
(2ep
εs

)1/α
and r =

α− 2

α
K2s

(2ep
εs

)2/α
,

we have P(Z > r) ≤ ε.
(c) Assume the same conditions as in (b). Write Zs :=

∑p
i=1(X

2
i − 1)1{|Xi|≥as} to make the depen-

dence on s explicit. By choosing the same as and rs as in (b), we have

P
(
max
s∈[p]

Zs/rs > 1
)
≤ 2ε.

Proof. We denote the order statistics of |X1|, . . . , |Xp| as |X|(1) ≤ . . . ≤ |X|(p). For x ≥ 0, we write
qx := mini∈[p] P(|Xi| ≥ x) and Jx := {i ∈ [p] : |Xi| ≥ x}.
(a) Note that qx ≤ 2 exp{−(x/K)α} by Proposition 12(a). Since s ≤ √

p, we observe that

s∑
j=1

K2 log2/α
(4ep
εj

)
≤

s∑
j=1

K2 log2/α
(4ep2
εs2

)
≤ 22/αK2s log2/α

( 4p√
εs

)
= r.
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Then, by a union bound and a binomial tail bound, we have

P(Z > r) ≤ P(|Ja| > s) + P

(
s∑
j=1

(
|X|2(p−j+1) − 1

)
> r

)

≤ P(|Ja| > s) +
s∑
j=1

P
(
|X|(p−j+1) > K log1/α

(4ep
εj

))

≤
(ep
s

)s{
2 exp

{
−
( a
K

)α}}s
+

s∑
j=1

(ep
j

)j{
2 exp

{
−
(
K log1/α

(4ep
εj

)
K

)α}}j

≤ (ε/2)s +
s∑
j=1

(ε/2)j ≤ ε.

(b) Note that qx ≤ (K/a)α by Chebyshev’s inequality. We now observe that

s∑
j=1

K2
(2ep
εj

)2/α
≤ K2

(2ep
ε

)2/α{
1 +

∫ s

1
x−2/α dx

}
≤ α− 2

α
K2s

(2ep
εs

)2/α
= r

The rest then follows from the proof for part (a).
(c) By a union bound and the proof for the previous parts, we have

P
(
max
s∈[p]

Zs/rs > 1
)
≤

(
p∑
s=1

P(|Ja(s)| > s)

)
+ P

(
max
s∈[p]

∑s
j=1

(
|X|2(p−j+1) − 1

)
rs

> 1

)

≤
p∑
s=1

(ε/2)s +

p∑
j=1

P
(
|X|(p−j+1) > K

(2ep
εj

)2/α)

≤
p∑
s=1

(ε/2)s +

p∑
j=1

(ε/2)j ≤ 2ε.

Lemma 18. Let γ > 0. Then, for all x ≥ (2γ − 1)−1/γ we have

∞∑
i=0

exp
{
−(x2i)γ

}
≤ 2 exp(−xγ).

Proof. By the convexity of y 7→ 2γy, we have that 2(i+1)γ − 2iγ ≥ 2iγ − 2(i−1)γ and thus

2iγ = 1 +
i∑

j=1

(2jγ − 2(j−1)γ) ≥ 1 + i(2γ − 1).

for all i ∈ N. Denote x̃ := exp(xγ). We hence deduce that when x̃ > 2
1

2γ−1 ,

∞∑
i=0

exp
{
−(x2i)γ

}
=

∞∑
i=0

x̃−2iγ ≤
∞∑
i=0

x̃−1−i(2γ−1) =
1

x̃
(
1− x̃−(2γ−1)

) ≤ 2x̃−1.
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Lemma 19. Let Z1, . . . , Zn be independent mean zero random variables.
(a) Assume that there exists C > 0 such that EZ4

i ≤ C for all i ∈ [n]. Then for any
v = (v1, . . . , vn)

⊤ ∈ Rn, we have

E
[( n∑

i=1

viZi

)4]
≤ 3C∥v∥42.

(b) Assume that there exists C > 0 such that E
(
|Zi|2k

)
≤ C for some k ≥ 1. Then, there exists a

constant Ck > 0, depending only on k and C such that

E
[∣∣∣ n∑

i=1

Zi/n
∣∣∣2k] ≤ Ckn

−k.

Proof. (a) Since EZ0
i = 1 and EZ1

i = 0 for all i ∈ [n], we have

E
[( n∑

i=1

viZi

)4]
=

n∑
i=1

v4i EZ4
i +

∑
1≤i<j≤n

6v2i v
2
jE(Z2

i Z
2
j ) ≤ C

( n∑
i=1

v4i +
∑

1≤i<j≤n
6v2i v

2
j

)
≤ 3C

( n∑
i=1

v2i

)2
,

where the first inequality follows from Jensen’s inequality.
(b) Note that Sj :=

∑j
i=1 Zi is a martingale (adapted to the natural filtration) and [S]j :=

∑j
i=1 Z

2
i

can be viewed as the quadratic variation of this martingale. By Burkholder–Davis–Gundy inequality
(e.g. Beiglböck and Siorpaes, 2015, Theorem 1.1), we have for any k ≥ 1,

E
[
|Sn|2k

]
≤ E

[(
max
j≤n

|Sj |
)2k]

≤ Ck,1E
[(
[S]n

)k]
,

for some constant Ck,1 > 0, depending only on k. Thus, we have

E
[∣∣∣ n∑

i=1

Zi/n
∣∣∣2k] ≤ Ck,1

n2k
E
[( n∑

i=1

Z2
i

)k]
≤
Ck,1
nk

E
[∑n

i=1 |Zi|2k

n

]
≤
CCk,1
nk

,

where we have used Jensen’s inequality in the second inequality.

Lemma 20. Let k ≥ 1 and V1, . . . , VL be independent random vectors in Rp, each having zero mean
and independent coordinates. Assume that there exists C > 0 such that E

[
|Vi(j)|2k

]
≤ C for all

i ∈ [L] and j ∈ [p]. Denote V :=
∑L

i=1 Vi/L. Then for any δ ∈ (0, 1), we have

P

(∣∣∣∣ p∑
j=1

L
(
V

2
(j)− 1/L

)∣∣∣∣ > Ck
p

1
2
∨ 1

k

δ1/k

)
≤ δ

for some constant Ck > 0, depending only on C and k.

Proof. We first prove the result for 1 ≤ k ≤ 2. Note that for any η > 0

P
(∣∣∣∣ p∑

j=1

L
(
V

2
(j)− 1/L

)∣∣∣∣ > η

)
≤ pP

(∣∣L(V 2
(1)− 1/L

)∣∣ > η
)
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+ P
(∣∣∣∣ p∑

j=1

L
(
V

2
(j)− 1/L

)
1
{∣∣L(V 2

(j)− 1/L
)∣∣ ≤ η

}∣∣∣∣ > η

)
. (79)

We control the two terms separately. For the first term, we have

P
(∣∣L(V 2

(1)− 1/L
)∣∣ > η

)
≤

E
[∣∣LV 2

(1)− 1
∣∣k]

ηk
≤

2k−1
(
E
∣∣LV 2

(1)
∣∣k + 1

)
ηk

≤
2k−1(C0,k + 1)

ηk
, (80)

where the three inequalities follow, respectively, from Markov’s inequality, Jensen’s inequality and
Lemma 19(b), with C0,k being the constant that depends only on C and k in that lemma. For
convenience, we denote C1,k := 2k−1(C0,k + 1) hereafter. For the second term in (79), we have

P
(∣∣∣∣ p∑

j=1

L
(
V

2
(j)− 1/L

)
1
{∣∣L(V 2

(j)− 1/L)
∣∣ ≤ η

}∣∣∣∣ > η

)

≤ 1

η2

{
pE
[(
LV

2
(1)− 1

)2
1
{∣∣L(V 2

(1)− 1/L)
∣∣ ≤ η

}]

+ p2
(
E
[
L
(
V

2
(1)− 1/L

)
1
{∣∣L(V 2

(1)− 1/L)
∣∣ > η

}])2
}

≤ p

η2
E
[∣∣LV 2

(1)− 1
∣∣kη2−k]+ p2

η2

{
E
[∣∣LV 2

(1)− 1
∣∣k]}2/k{

P
(∣∣L(V 2

(1)− 1/L
)∣∣ > η

)}2(k−1)/k

≤
C1,kp

ηk
+
C

2/k
1,k p

2

η2

(
C1,k

ηk

)2(k−1)/k

, (81)

where we have used Markov’s inequality for the first inequality, Hölder’s inequality for the second
one and (80) for the last one. Combining (79), (80) and (81), we have

P
(∣∣∣∣ p∑

j=1

L
(
V

2
(j)− 1/L

)∣∣∣∣ > η

)
≤

2C1,kp

ηk
+
C2
1,kp

2

η2k
.

Note that if C1,kp/η
k > 1, the bound above holds trivially. Therefore we obtain

P
( p∑
j=1

L(V
2
(j)− 1/L) > η

)
≤

3C1,kp

ηk
,

for any η > 0, which is equivalent to the claimed bound.
For k > 2, by Markov’s inequality, (80) and Lemma 19(b), there exists a constant C2,k > 0,

depending only on k and C such that

P
(∣∣L(V 2

(1)− 1/L
)∣∣ > η

)
≤

E
[∣∣∣∑p

j=1 L
(
V

2
(j)− 1/L

)∣∣∣k]
ηk

≤
C2,kp

k/2

ηk
,

which proves the desired result.
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Lemma 21. Let n ∈ N and c ∈ R. Let a1, . . . , an, b1, . . . , bn be 2n real numbers. Suppose that
ai − bi ≤ c for all i ∈ [n]. Then

median(a1, . . . , an)−median(b1, . . . , bn) ≤ c.

Proof. We sort the two arrays respectively and obtain a(1) ≤ . . . ≤ a(n) and b(1) ≤ . . . ≤ b(n). We
show that a(i) − b(i) ≤ c for all i ∈ [n]. Indeed, there exists a set Ii ⊆ [n] with |Ii| ≥ i such that

b(i) = max{bj : j ∈ Ii} ≥ max{aj − c : j ∈ Ii} ≥ a(i) − c.

The desired results follows by observing that the median is a convex combination of the order
statistics.
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