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Abstract

High-dimensional Online Changepoint Detection

Yudong Chen

The problem of changepoint detection and estimation has a long history, dating back to at
least Page (1954, 1955). As modern technological advances, data sets of unprecedented size
can be collected at high frequency. This provides statisticians with new challenges in this
field. In this thesis we study the online version of the changepoint detection problem in
high-dimensional settings. In Chapter 1, we survey the field of changepoint detection. We
focus, in particular, on the comparison between the offline problem and the online problem,
the contrast between the univariate setting and the high-dimensional setting and inference
problems associated with changepoints.

In Chapter 2, we introduce a novel method for high-dimensional, online changepoint
detection in settings where a multivariate data stream may undergo a change in mean. The
procedure works by performing Gaussian likelihood ratio tests against simple alternatives
of different scales in each coordinate, and then aggregating test statistics across scales and
coordinates. Our algorithm is online in the sense that both its storage requirements and
worst-case computational complexity per new observation are independent of the number of
previous observations. We prove that the patience, or average run length under the null, of
our procedure is at least at the desired nominal level, and provide guarantees on its response
delay under the alternative that depend on the sparsity of the vector of mean change. Our
procedure shows excellent performance compared to existing methods in the numerical studies.
Our algorithm is implemented in the R package ocd, and we also demonstrate its utility on a
seismology data set.

In Chapter 3, we focus on the problem of inference for high-dimensional online changepoint
detection. We propose a confidence interval for the changepoint location. The procedure first
identifies coordinates with large signals and then combines univariate confidence intervals
constructed from each of these coordinates. We prove that the confidence interval constructed
has the desired coverage level and provide a guarantee on the length of the confidence interval.
Our procedure also provides an estimate for the effective support of the signal as a byproduct.
Simulations confirm the practical effectiveness of our proposal, and we also illustrate its
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applicability on both US excess deaths data from 2017–2020 and S&P 500 data from the
2007–2008 financial crisis.
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Chapter 1

Introduction

Modern technology has not only allowed the collection of data sets of unprecedented size,
but has also facilitated the real-time monitoring of many types of evolving processes of
interest. Wearable health devices, astronomical survey telescopes, self-driving cars and
transport network load-tracking systems are just a few examples of new technologies that
collect large quantities of streaming data, and that provide new challenges and opportunities
for statisticians.

Very often, a key feature of interest in the monitoring of a data stream is a changepoint ;
that is, a moment in time at which the data generating mechanism undergoes a change. Such
times often represent events of interest, e.g. a change in heart function, and moreover, the
accurate identification of changepoints often facilitates the decomposition of a data stream into
stationary segments. Applications of changepoints include service attacks in Internet traffic
monitoring (Peng, Leckie and Ramamohanarao, 2004), stock price movements in financial
markets (Chen and Gupta, 1997), and blood oxygen level response change in functional
Magnetic Resonance Imaging (fMRI) (Aston and Kirch, 2012).

Historically, it has tended to be univariate time series that have been monitored and
studied, within the well-established field of statistical process control (e.g. Duncan, 1952; Page,
1954; Barnard, 1959; Oakland, 2007; Tartakovsky, Nikiforov and Basseville, 2014). More
efficient algorithms for changepoint detection in univariate settings have been proposed and
analysed in recent years (e.g. Fearnhead and Liu, 2007; Killick, Fearnhead and Eckley, 2012;
Frick, Munk and Sieling, 2014; Fryzlewicz, 2014; Baranowski, Chen and Fryzlewicz, 2019;
Wang, Yu and Rinaldo, 2020).

These days, however, it is frequently the case that many data processes are measured
simultaneously. In the context of changepoint detection, this introduces the new challenge of
borrowing strength across the different component series in an attempt to detect much smaller
changes than would be possible through the observation of any individual series alone. The
last 5-10 years have seen an increasing amount of works which study the changepoint problem
under multivariate or high-dimensional settings. A large majority of these works have been
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focusing on the retrospective challenges of detecting and estimating changes after seeing all of
the available data (e.g. Chan and Walther, 2015; Cho and Fryzlewicz, 2015; Jirak, 2015; Cho,
2016; Wang and Samworth, 2018; Enikeeva and Harchaoui, 2019; Kaul et al., 2021a; Liu, Gao
and Samworth, 2021; Londschien, Kovács and Bühlmann, 2021; Padilla et al., 2021b; Rinaldo
et al., 2021; Follain, Wang and Samworth, 2022).

Instead of working on the entire dataset in a retrospective way, one can also observe data
sequentially and seek to declare changes as soon as possible after they have occurred. In fact,
this often turns out to be a more natural approach in real world scenarios. For example,
governments need to make public health decisions based on daily-reported COVID-19 case
numbers and investors need to make trading decisions based on real-time market movements.
This sequential/online approach to the changepoint problem is nowadays receiving increasing
attention (e.g. Tartakovsky et al., 2006; Mei, 2010; Xie and Siegmund, 2013; Zou et al., 2015;
Chan, 2017; Soh and Chandrasekaran, 2017; Kirch and Stoehr, 2019; Dette and Gösmann,
2020; Gösmann et al., 2020; Yu et al., 2020). Sequential changepoint detection has also been
studied in the econometrics literature as well, where the problem is often referred to as that of
monitoring structural breaks (Chu, Stinchcombe and White, 1996; Leisch, Hornik and Kuan,
2000; Zeileis et al., 2005).

In this thesis, we focus on a high-dimensional, online changepoint detection problem. We
propose a novel method for this problem in Chapter 2. An online detection procedure is
naturally sequential, but furthermore, the computational complexity for processing a new
observation, as well as the storage requirements, can depend only on the number of bits
needed to represent the new observation1. Importantly, they are not allowed to depend on the
number of previously observed data points. This turns out to be a very stringent requirement,
in the sense that finding online algorithms with good statistical performance is typically
extremely challenging. Online algorithms must necessarily store only compact summaries
of the historical observations, so the class of all possible procedures is severely restricted.
In Chapter 3, we introduce and study two new inferential challenges associated with the
sequential detection of change in a high-dimensional mean vector. First, we seek a confidence
interval for the changepoint, and second, we estimate the set of indices of coordinates in
which the mean changes. We propose an online algorithm that achieves these two goals.

In order for readers to better understand the context of this thesis, we provide a literature
review on the entire field of changepoint detection in the rest of this chapter. We first survey
the well-studied field of offline changepoint detection, both univariate and high-dimensional.
We will mainly focus on the mean change problem. We then move on to introduce some basic
concepts and performance measures in the sequential problem, as well as some well-known log-

1For the purpose of this definition, we ignore the errors in rounding real numbers to machine precision.
Thus, when we later work with observations having Gaussian (or other absolutely continuous) distributions,
we do not distinguish between these distributions and quantised versions where the data have been rounded
to machine precision.
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likelihood based control charts. These procedures are often useful when pre- and post-change
parameters are known exactly. Finally, we provide a summary of some recent developments
in the (high-dimensional) sequential/online changepoint detection problem.

Let X1, X2, . . . be a sequence of random vectors in Rp. In most of this chapter, we will
assume no temporal dependence, i.e. the data points are independent. Below, we assume that
F0, F1, . . . are distributions with densities f0, f1, . . . correspondingly, with respect to some
common base measure. For the single changepoint problem, in the offline setting, we have
access to the entire data set up to time n and assumeX1, . . . , Xz

iid∼ F0 andXz+1, . . . , Xn
iid∼ F1.

A corresponding multiple changepoint model assumes that there exist ν (an unknown number)
changepoints: 1 ≤ z1 < z2 < . . . < zν ≤ n− 1 such that Xzj+1, . . . , Xzj+1

iid∼ Fj for 0 ≤ j ≤ ν,
where we define z0 = 0 and zν+1 = n. In the sequential/online setting, we observe data points
one at a time and assume X1, . . . , Xz

iid∼ F0 and Xz+1, Xz+2, . . .
iid∼ F1. In later sections, we

will consider simpler versions of these general formulations under different settings.

1.1 Offline changepoint problem

In the offline version of the changepoint problem, we have access to the entire dataset and
work retrospectively to detect and estimate changes. We first define the cumulative sum
(CUSUM) statistic. The original version of the CUSUM was introduced by Page (1954) in
the field of quality control and sequential setting and is simply defined to be Sn :=

∑n
i=1Xi

(see Section 1.2.1). Now, let (s, t, e) be any triple satisfying 0 ≤ s < t < e ≤ n. We define the
(offline) CUSUM statistic:

T s,et = T s,et (X) :=

√
e− t

(e− s)(t− s)

t∑
i=s+1

Xi −

√
t− s

(e− s)(e− t)

e∑
i=t+1

Xi, (1.1)

where X = (X1, . . . , Xn)
T . Note that if X1, . . . , Xn are all univariate normal random variables

with equal variance, then max1≤t≤n−1

∣∣T 0,n
t

∣∣2 is the generalised likelihood ratio statistic for
testing the null of no mean change against the alternative that there exists a mean shift
within these n data points.

1.1.1 Univariate multiple changepoint problem

We now consider the following simple univariate mean shift model

Xi =

ν∑
j=0

µ(j)1{zj<i≤zj+1} + εi, i = 1, . . . , n,

where 0 = z0 < z1 < z2 < . . . < zν < zν+1 = n and ε1, . . . , εn
iid∼ N (0, 1). The mean follows a

piecewise-constant structure with ν + 1 segments. This is consistent with the general form
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stated earlier. We also note that the normality assumption on the noise can be relaxed in
many cases. The task is to estimate the number of changepoints ν, as well as their locations.

In this univariate multiple changepoint problem, one of the most popular methods is
Binary Segmentation (BS). BS was used in cluster analysis as early as in Scott and Knott
(1974) and was first seen used in random processes in Vostrikova (1981). The BS algorithm
for the changepoint problem first searches for the time point t̂ which maximises |T 0,n

t |. If
|T 0,n

t̂
| does not exceed a certain threshold, then no changepoint is detected and the procedure

stops. Otherwise, we can then split the data into two segments and work recursively. BS
enjoys a low computational complexity (typically) of order O(n log n).

Whilst BS is simple to implement and computationally fast, it has been shown to be
statistically sub-optimal in some scenarios. In particular, Fryzlewicz (2014) showed that if
we have two changes close together and the mean is the same before the first and after the
second changepoint, then BS can have almost no power in detecting the changes in scenarios
where other methods would have power close to one in detecting both. This is because BS
only adds changes one at a time, and this can mean that it struggles in a situation where
multiple changes are present but there is little improvement in fit that is possible from fitting
a single change.

To overcome this issue, Fryzlewicz (2014) proposed a Wild Binary Segmentation (WBS)
procedure. Instead of using the entire dataset X1, . . . , Xn to identify the first changepoint, we
randomly choose a number of sub-intervals [sm, em]m∈{1,...,R}. For each m ∈ {1, . . . , R}, we
can find a time point t̂m that maximises |T sm,emt |. We compare maxm∈{1,...,R} |T

sm,em
t̂m

| with
a certain threshold, with the corresponding time point t̂m as the first changepoint location if
the threshold is exceeded. The domain is then split into two sub-intervals, one to the left of
t̂m and one to the right. The recursion continues by applying the previous steps to each of
these two intervals.

With these randomly drawn intervals, it is hopeful that one interval will contain one
changepoint only, and the changepoint location is well separated from the interval endpoints.
Under such scenario, the CUSUM estimator works very well in picking up the changepoint
location. These random intervals allow us to localise CUSUM statistics and therefore enable
WBS to overcome the shortcomings of BS discussed earlier. WBS, up to today, remains one
of the state-of-the-art univariate changepoint methods and is also instructive when we are
dealing with multiple changepoints in high-dimensional settings. Recently, Fryzlewicz (2020)
proposed the ‘Wild Binary Segmentation 2’ and ‘Steepest Drop to Low Levels’ (WBS2.SDLL)
which improves upon the WBS procedure.

Based on the general idea of WBS, the Narrowest-Over-Threshold (NOT) method was
proposed by Baranowski, Chen and Fryzlewicz (2019). In WBS, we consider all intervals whose
CUSUM statistic is above a threshold, order these by the magnitude of the statistic, recursively
add a new change with the highest value of the statistic and then remove subsequent intervals
which overlap with this change. In NOT, we do the same but order the intervals based on
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the width of the interval instead, i.e. we keep all intervals whose CUSUM is greater than the
threshold but then add a change based on the one from the narrowest interval first. In some
changepoint problems (e.g. slope changes in a piecewise-linear signal), if we estimate a single
changepoint when there is actually more than one, we can obtain a large value of the test
statistic, but the estimated changepoint location may be far away from the true ones. The
idea of NOT is that by focusing on narrow intervals, we can minimise the chance that we
estimate a changepoint from a data segment containing more than one changepoint. NOT
could also be extended beyond the simple piecewise constant model. Kovács et al. (2020)
proposed Seeded Binary Segmentation (SeedBS), which uses a deterministic construction of
intervals instead of random ones. Padilla et al. (2021a) generalised the BS/WBS approach to
nonparametric settings by using the CUSUM Kolmogorov–Smirnov statistic.

An alternative to the CUSUM-based methods is to use the moving sum (MOSUM) statistic
(Hušková and Slabý, 2001; Eichinger and Kirch, 2018). The MOSUM statistic is defined as:

Mt :=
1√
2G

∣∣∣∣ t+G∑
i=t+1

Xi −
t∑

i=t+1−G
Xi

∣∣∣∣, G ≤ t ≤ n−G, (1.2)

with bandwidth G = G(n). We can identify changepoints when the MOSUM statistic
exceeds a certain threshold. The method requires a pre-specified bandwidth, though this
could be circumvented by appropriately merging changepoint candidates obtained from a few
automatically chosen bandwidths. We also remark that this MOSUM procedure could be
deemed as a pseudo-sequential procedure, as the changepoints are estimated one by one.

Another popular approach to the univariate multiple changepoint problem is to maximise a
penalised log-likelihood (equivalently, under a normality assumption, to minimise a penalised
least squares criterion). The penalty term is to prevent overfitting. Yao and Au (1989) first
used least squares to estimate the changepoint locations and showed that the estimate is
consistent when ν is known. Yao (1988) used the BIC/SIC (Schwarz, 1978) to estimate an
unknown ν. Since then, there has been a vast literature studying various forms of the penalty
term in this optimisation problem (e.g. Lavielle and Moulines, 2000; Pan and Chen, 2006).

One major concern of such an approach is the computational complexity. For example,
the Optimal Partitioning (OP) procedure (Jackson et al., 2005) is an exact search method
that solves the optimisation problem mentioned in the last paragraph with the penalty term
equal to the number of changes. Equivalently, we minimise

βm− 2

m∑
i=0

ℓ(Xζi+1, . . . , Xζi+1−1),

over all m ∈ {0, 1, . . . , n − 1} and 0 = ζ0 < ζ1 < . . . < ζm < ζm+1 = n for each m, where
ℓ(·) denotes the maximum log-likelihood for data in a segment (maximising out the segment
parameter). Let F (k) be the minimised objective function on data X1, . . . , Xk. Then by
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considering the position of the last change, it can be shown that

F (k) = min
0≤k′<k

{
β + F (k′)− 2ℓ(Xk′+1, . . . , Xk)

}
, (1.3)

for k ∈ {1, . . . , n}, with F (0) = −β. Thus, dynamic programming can be used to find
the value of F (k) and the changepoint locations within X1, . . . , Xk for each k ∈ {1, . . . , n}
recursively. The set of estimated changepoints up to the k-th observation can be computed
via cp(k) := {cp(k∗(k)), k∗(k)}, where k∗(k) is a minimiser of (1.3). Then the set cp(n) is the
final output for all estimated changepoint locations. The computational complexity of this
procedure is O(n2). Hence, OP is significantly slower than BS (and its variants), especially
when n is large.

Based on the Optimal Partitioning idea, Killick, Fearnhead and Eckley (2012) proposed
the Pruned Exact Linear Time (PELT) procedure. At the k-th step of the iteration in dynamic
programming above, instead of calculating k values in (1.3), we remove from consideration
those candidate time points k′ that can never be a minimiser. This extra pruning step
can reduce the computational complexity to O(n) in best-case scenarios, but the worst-case
computational time remains O(n2) when no pruning occurs. Faster algorithms than PELT for
maximising a penalised log-likelihood were later proposed by Rigaill (2015) and Maidstone
et al. (2017).

Another state-of-the-art method is the Simultaneous Multiscale Change Point Estimator
(SMUCE) proposed by Frick, Munk and Sieling (2014). SMUCE minimises the number of
changepoints over all possible right continuous step (regression) functions subject to a log-
likelihood ratio based multiscale statistic being below a certain threshold. The optimisation
simultaneously produces an estimate of the number of changepoints and a way to estimate the
changepoint locations as well. Additionally, SMUCE gives confidence bands for the mean (as
a step function between 1 and n) and confidence intervals for the changepoint locations. We
shall defer the detailed discussion of this method to Section 1.3. Since the above constrained
optimisation problem can again be converted to an unconstrained problem with a penalty
term, dynamic programming with pruning can also be used to reduce the computational
complexity.

1.1.2 High-dimensional offline changepoint problem

Before discussing the high-dimensional problem, we first mention some prior works that
extended the univariate methods to multivariate (but not necessarily high-dimensional) settings.
Ombao, von Sachs and Guo (2005) utilised the Smooth Localised Complex Exponentials
(SLEX) model originally developed in one-dimensional random process in multivariate time
series. Kirch, Muhsal and Ombao (2015) extended the change point test statistics developed
by Hušková, Prášková and Steinebach (2015) to the vector autoregressive (VAR) model.
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When analysing their methods, most of these works in multivariate settings assume a
fixed dimension p as the total number of observations n grows. In high-dimensional settings,
however, we can have both p and n being large, and we may assume a sparse ‘signal’, as in
sparse linear models (see Wainwright, 2019, Chapter 7 for detailed discussion). The natural
sparsity assumption here is that the change vector is sparse, i.e. the mean change only occurs
in a sparse subset of all coordinates. This sparsity assumption also arises naturally from
applications such as stock price movements (Chen and Gupta, 1997) and chromosomal copy
number abnormality in bioinformatics (Bleakley and Vert, 2011).

In this section, we consider the following model

Xi ∼ Np(µi, σ2Ip), 1 ≤ i ≤ n,

where there exist 0 = z0 < z1 < z2 < . . . < zν < zν+1 = n such that µzi+1 = . . . = µzi+1 :=

µ(i) for 0 ≤ i ≤ ν. We will be focusing on the single changepoint problem (i.e. ν = 1), unless
otherwise stated, since we can combine a method developed for this model with a top-down
approach such as the WBS to locate multiple changepoints in the dataset (e.g. Wang and
Samworth, 2018). There are two tasks associated with this problem. One is to test the null
hypothesis that there is no change. The other is to estimate the changepoint location, if
there exists one. In practice, in many cases, taking the maximising time point t of the test
statistics(s) can yield a good changepoint location estimate.

We denote the vector of change θ :=
(
µ
(1)
1 − µ

(0)
1 , . . . , µ

(1)
p − µ

(0)
p

)
and its magnitude

ϑ := ∥θ∥2. We define the matrix X := (X1, X2, . . . , Xn) ∈ Rp×n and define its CUSUM
matrix T = T (X) ∈ Rp×(n−1) by:

[T (X)]j,t := T 0,n
t (Xj,·), j ∈ {1, . . . , p} and t ∈ {1, . . . , n− 1},

where Xj,· denotes the jth row of X and the right-hand side is defined in (1.1). Under the
null, we have

(Tj,1, . . . , Tj,n−1)
d
=

(
σBt√
t(1− t)

)
t= 1

n
,...,n−1

n

, (1.4)

where Bt is a standard Brownian bridge on [0, 1], i.e. Bt
d
= Wt − tW1 for t ∈ [0, 1], where

(Wt)t≥0 is a standard Brownian motion. Furthermore, when there is a change, if we apply
the calculation of the CUSUM to the mean matrix of X instead, we find that this CUSUM
matrix has rank 1 with leading left singular vector θ, the vector of change. These good
properties make the CUSUM statistic arguably the most popular tool in the high-dimensional
changepoint literature. The challenge, however, lies in finding an appropriate aggregation
mechanism of the CUSUM statistic such that noise coordinates are left out.
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Jirak (2015) constructed a test statistic by using a weighted ℓ∞ aggregation, motivated
by (1.4):

Ψ∞ := max
1≤t≤n−1

max
1≤j≤p

√
t(n− t)
n

∣∣Tj,t∣∣.
We reject the null hypothesis when Ψ∞ exceeds a certain threshold. The asymptotic limiting
distribution of Ψ∞ under the null as n, p → ∞ is derived in the paper. The changepoint
location can also be estimated by finding the maximiser (in t) of a quantity similar to the
test statistic. Though the method could be generalised to include multivariate ARMA and
GARCH models, one major issue with a maximum statistic is that, for a fixed ϑ, the procedure
can be inefficient when the change is evenly spread out across many coordinates. Yu and
Chen (2020) recently used a Gaussian multiplier bootstrap to determine the threshold of
another ℓ∞-based CUSUM test statistic.

The ℓ2 aggregation was studied by Zhang et al. (2010); Horváth and Hušková (2012)
in multivariate settings without any sparsity assumption. Enikeeva and Harchaoui (2019)
proposed a linear statistic and a scan statistic:

Ψlinear :=
1

H1(p, α1)
max

1≤t≤n−1

∑p
j=1 T 2

j,t − p√
2p

,

Ψscan := max
1≤s≤p

1

H2(s, p, α2)
max

1≤t≤n−1

∑s
j=1 T 2

(j),t − s√
2s

,

where |T(1),t| ≥ |T(2),t| ≥ . . . ≥ |T(p),t| and where H1(p, α1) and H2(s, p, α2) are thresholds that
provide significance levels α1 and α2 for the linear statistic and the scan statistic respectively.
We reject the null hypothesis if either Ψlinear or Ψscan exceeds 1. The asymptotic regime in
this work is s → ∞, s/p → 0 and logn

s log(p/s) → 0 as p → ∞ . When the vector of change is
dense or moderately sparse, the linear statistic will detect the change; when the vector of
change is very sparse, the scan statistic will be more effective. The boundary between the
two regimes is s ≍ p1/2. This procedure has a vanishing testing error when

z1(n− z1)
n

ϑ2 ≥ min
{√

p log p+
√
p log log n, s log(p/2)

}
. (1.5)

Cho and Fryzlewicz (2015) used the following ℓ1 aggregation of the CUSUM statistic:

Ψℓ1 := max
1≤t≤n−1

p∑
j=1

|Tj,t|1{|Tj,t|≥πn},

with some threshold πn, and combined this with the wild binary segmentation (WBS) to
detect multiple changepoints. Cho (2016) extended this ℓ1 aggregation method by providing
a data-adaptive mechanism for choosing the threshold πn and proposed the Double CUSUM
method. The adaptive statistic is then able to detect both sparse and dense changes.
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Another approach is to project the data matrix X along a good direction and reduce this
to a univariate problem. The oracle projection direction is θ/ϑ. Thus, we seek a data-driven
direction which is close to this oracle one. Recall that the vector of change θ is the leading
singular vector of the CUSUM matrix of the mean matrix of X. If the sparsity s is known, then
the s-sparse leading left singular vector of T is a consistent estimator of the oracle projection
direction. However, computing this vector is a non-convex and NP-hard optimisation problem.
Wang and Samworth (2018) proposed the Information Sparse Projection for Estimation
of Changepoints algorithm (inspect), which uses a convex relaxation of this problem and
computes the estimated oracle projection direction v̂ as the leading singular vector of

M̂ ∈ argmax
M∈S

{
tr(T ⊤M)− λ∥M∥1

}
,

with S := {M ∈ Rp×(n−1) : ∥M∥∗ ≤ 1}, where ∥M∥1 is the entrywise ℓ1-norm and ∥M∥∗ can
be chosen to be either the nuclear norm or the entrywise l2-norm of matrix M . The rate
of convergence of the corresponding changepoint estimation can be shown to be minimax
optimal up to a factor of log log n under mild assumptions.

This sparse projection idea can also be generalised to exploit group sparsity structure
(Cai and Wang, 2021) and handle heterogeneous missingness in high-dimensional changepoint
problems (Follain, Wang and Samworth, 2022). For the latter problem, a new version of
the CUSUM statistic that is suitable for missing data was introduced by Follain, Wang and
Samworth (2022). Let Ω = (ωj,t) ∈ {0, 1}p×n be the revelation matrix, with ωj,t = 1 if Xj,t is
observed, and ωj,t = 0 otherwise. The MissCUSUM matrix T Miss = T Miss(X,Ω) ∈ Rp×(n−1)

is defined by:

[T Miss(X,Ω)]j,t :=

√(∑t
r=1 ωj,r

)(∑n
r=t+1 ωj,r

)∑n
r=1 ωj,r

(∑t
r=1(X ◦ Ω)j,r∑t

r=1wj,r
−
∑n

r=t+1(X ◦ Ω)j,r∑n
r=t+1wj,r

)
,

for j ∈ {1, . . . , p} and t ∈ {1, . . . , n − 1} such that
∑t

r=1wj,r > 0 and
∑n

r=t+1wj,r > 0

and 0 otherwise, where X ◦ Ω denotes the Hadamard product of X and Ω. When X is
fully observed, the MissCUSUM matrix coincides with the usual CUSUM matrix. Assume
that Ω has a row-homogeneous distribution, i.e. there exists an observation rate vector
q = (q1, . . . , qp)

⊤ ∈ (0, 1]p such that ωj,t ∼ Bern(qj), independently for all j ∈ {1, . . . , p}
and t ∈ {1, . . . , n}. Under this setting, the oracle projection direction is θ ◦ √q, where
√
q :=

(
q
1/2
1 , . . . , q

1/2
p

)T . Thus, a similar optimisation problem

(v̂, ŵ) ∈ argmax
v∈Rp:∥v∥2≤1

w∈Rn−1:∥w∥2≤1

{
tr(T ⊤vw⊤)− λ∥v∥1

}
,

can be solved to provide a good projection direction v̂.
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We list a couple more CUSUM-based methods below. Wang et al. (2022) constructed a
test statistic based on a normalised two-sample U-statistic. Their approach does not address
sparsity, though. A nonparametric extension of the CUSUM statistic in high-dimensional
settings based on kernel density estimators was introduced by Padilla et al. (2021b). We
now discuss some non CUSUM-based approaches. Kaul et al. (2021a) studied a plug-in
least squares estimator, which achieves an optimal (without any logarithmic factor) rate of
convergence of changepoint estimation on an integer scale (O(ϑ−2)), but requires slightly
stronger assumptions than those in Wang and Samworth (2018). Soh and Chandrasekaran
(2017) used a filtering method (similar to the moving sum approach discussed in Section 1.1.1),
combined with a denoising step which requires convex optimisation, to detect multiple
changepoints. Their algorithm is applicable in the sequential settings, though the theoretical
results are presented under the offline framework with a non-random sample size n.

Much of the theoretical analysis in previous literature has been devoted to quantifying
the performance of changepoint location estimation. This is in contrast to the analysis of
hypothesis tests which aim to detect whether a changepoint exists. Aston and Kirch (2018)
introduced a concept of high-dimensional efficiency that allows the understanding of the
detection power of different statistics. Enikeeva and Harchaoui (2019) derived the testing
rate of their adaptive test statistic, as shown in (1.5). Liu, Gao and Samworth (2021) showed
further that the minimax testing rate of a single changepoint is given by

z1(n− z1)
n

ϑ2 ≍


√
p log log(8n) if s ≥

√
p log log(8n)

max

{
s log

(
ep log log(8n)

s2

)
, log log(8n)

}
if s <

√
p log log(8n).

This rate shows a phase transition when s ≍
√
p log log(8n). The authors also constructed an

adaptive CUSUM-type testing procedure which achieves the minimax optimal testing rate.
We conclude this section by mentioning some works that focus on other changepoint

models in high dimensions. Avanesov and Buzun (2018) and Wang, Yu and Rinaldo (2021b)
studied the covariance structure change; Gibberd and Sandipan (2017), Kaul et al. (2021b)
and Londschien, Kovács and Bühlmann (2021) focused on graphical models; Wang, Yu and
Rinaldo (2021a) studied changes in sparse dynamic networks. Changepoint problems within
high-dimensional regression models have also become more popular in recent years (Lee,
Seo and Shin, 2016; Leonardi and Bühlmann, 2016; Kaul, Jandhyala and Fotopoulos, 2019;
Rinaldo et al., 2021).
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1.2 Sequential changepoint problem

Despite the rich literature on offline changepoint problems discussed in the previous section,
it is the sequential2 version of the problem that is arguably the more important for many
applications: one would like to be able to detect a change as soon as possible after it has
occurred. Entry points to this field include Lai (2001) and Tartakovsky, Nikiforov and
Basseville (2014). Of course, one option here is to apply an offline method after seeing every
new observation (or batch of observations). However, this is unlikely to be a successful
strategy: not only is there a difficult and highly dependent multiple testing issue to handle
when using the method repeatedly on datasets of increasing size (see also Chu, Stinchcombe
and White (1996) for further discussion of this point), but moreover, the storage and running
time costs may frequently be prohibitive.

A sequential changepoint procedure is an extended stopping time3 N (with respect to
the natural filtration) taking values in N ∪ {∞}. Equivalently, we can think of it as a family
of {0, 1}-valued estimators (Ĥn)

∞
n=1, where Ĥn = Ĥn(X1, . . . , Xn), and where the sequence

is increasing in the sense that Ĥm(X1, . . . , Xm) ≤ Ĥn(X1, . . . , Xn) for m ≤ n. Here, the
correspondence arises from Ĥn = 1{N≤n} and N = inf{n ∈ N : Ĥn = 1}, with the usual
convention that inf ∅ :=∞.

1.2.1 Control charts

Prior to changepoint problems becoming popular in the second half of last century, statistical
process control was already an important tool in manufacturing. Here, we briefly discuss
some control charts, which are often used in process monitoring. Let Yi be the score of the
i-the sample (e.g. number of defectives). Assume (Yi)i∈N are independent and identically
distributed with mean µ0 and standard deviation σ0. For simplicity, we assume µ0 and σ0 to
be known.

Shewhart charts (Shewhart, 1931). A group size k is fixed. Let Zn :=
∑nk

i=(n−1)k+1 Yi/k,
the sample mean of the n-th group. The process is under control after nk observations
if µ0 − Cσ0/

√
k ≤ Zi ≤ µ0 + Cσ0/

√
k, and not in control otherwise, for some C > 0.

The choice of group size k can be tricky here, as a large k can result in slow responses
while a small k can trigger many undesired false alarms.

CUSUM charts (Page, 1954). Define Sn :=
∑n

i=1 Yi, with S0 := 0. Action needs to be
taken when Sn−min0≤i≤n Si exceeds a certain threshold c. One important result about
CUSUM is that, equivalently, we can define Zn := max{Zn−1 + Yn, 0}, with Z0 := 0,

2Readers should take notice that in many previous works, the word online is used instead of sequential. To
avoid confusion with the definition of an online procedure at the beginning of this chapter, we shall use the
word sequential throughout this section.

3A random variable τ taking values in N ∪ {∞} is an extended stopping time with respect to the filtration
(Fn)n∈N, if {τ = n} ∈ Fn for all n ∈ N.
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and declare when Zn > c. We remark that in the above scheme, we only care about an
upward deviation. A two-sided scheme can easily be constructed from two one-sided
ones.

EWMA charts (Roberts, 1959). For a exponentially weighted moving chart (EWMA),
we define recursively that Zn := (1− λ)Zn−1 + λYn, with Z0 := 0, for some λ ∈ (0, 1].
The process is in control if µ0 − Cσ0

√
λ/(2− λ) ≤ Zn ≤ µ0 + Cσ0

√
λ/(2− λ) when n

is large. An EWMA chart incorporates all the information from previous data but puts
more emphasis upon most recent observations. Note that an EWMA chart with λ = 1

coincides with a Shewhart chart with k = 1.

1.2.2 Classic sequential detection procedures and criteria

Many classic sequential detection procedures require knowing both pre-change and post-change
densities f0 and f1. In this section, we use Pz to denote the joint distribution of (Xn)

∞
n=1,

where the change takes place at time z and Ez the expectation under this distribution. Note
that z =∞ corresponds to the case of no change.

We first discuss the minimax framework of sequential change point detection. Under
this framework, the two most important performance measures of a detection procedure are
patience and responsiveness. More specifically, the patience of a procedure N is its average
run length (ARL) in the absence of change (under the null). We denote this quantity by
ARL(N) := E∞N . Let Cγ be the class of detection procedures with ARL at least γ. The
responsiveness of a procedure N is characterised by the essential supremum average detection
delay (ESADD) or (worst-)worst-case response delay (Lorden, 1971):

ESADD(N) := sup
z∈N∪{0}

ess supEz
[
(N − z) ∨ 0

∣∣ X1, . . . , Xz

]
.

The average detection delay here is maximised first over all possible pre-change observation
sequences and then over all changepoint locations.

In the changepoint literature, Page’s CUSUM chart/procedure introduced in the last
section is often defined with Yi being the log-likelihood ratio, i.e.

NPage = NPage(c) := inf

{
n ∈ N : max

1≤k≤n

n∑
i=k

log
f1(Xi)

f0(Xi)
≥ c
}
, (1.6)

with threshold c > 0. Let Zn := max1≤k≤n
∑n

i=k log
f1(Xi)
f0(Xi)

with Z0 := 0 denote the tracked
statistic. Page’s procedure is the building block for many future works, so it is essential
to understand the underlying idea. First, Zn is the generalised likelihood ratio statis-
tic for testing H0 : X1, . . . , Xn ∼ f0 against H1 : ∃0 ≤ z < n such that X1, . . . , Xz ∼
f0 and Xz+1, . . . , Xn ∼ f1. This is exactly the test we are interested in at time n. Secondly,
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we consider the sequential testing task to determine whether X1, X2, . . . are from density f0
or density f1. The optimal test is the sequential probability ratio test (SPRT) (Wald, 1947;
Wald and Wolfowitz, 1948), where we calculate

∑n
i=1 log(f1(Xi)/f0(Xi)) at each time n. We

use upper boundary c > 0 and lower boundary 0 here for our SPRT. Once the sum exceeds
c, we declare that the sample is from f1, and once the sum drops below 0, we declare that
the sample is from f0. Recall that we can update the tracked statistic in Page’s procedure
recursively via Zn := max{Zn−1 + log(f1(Xn)/f0(Xn)), 0}. This corresponds to repeatedly
using the SPRT. Once we have declared f0, we then throw away everything up to this point
and restart the SPRT from 0. This is ideal for our changepoint model, as we can eliminate a
part of pre-change sample with every reset of the SPRT.

Lorden (1971) explored further the link between Page’s procedure and the SPRT and
showed that, with threshold c = log γ, Page’s procedure is asymptotically minimax optimal
as γ →∞ and satisfies

ESADD(NPage(log γ)) ∼ inf
N∈Cγ

ESADD(N) ∼ log γ

D(f1∥f0)
,

where D(f1∥f0) denotes the Kullback–Leibler divergence from f0 to f1. Moustakides (1986)
proved further that, non-asymptotically, Page’s procedure is optimal for each γ > 0. An
alternative proof of this optimality was given by Ritov (1990), where Page’s procedure was
viewed under a Bayesian perspective and an optimal strategy of a sequential stochastic game
was considered.

The supremum conditional average detection delay (SCADD), proposed by Pollak (1985):

SCADD(N) := sup
z∈N∪{0}

Ez[N − z | N > z],

is a slightly less pessimistic responsiveness measure than Lorden’s criterion. We shall discuss
the optimal procedure under this criterion later in the section.

The Bayesian framework assumes that the changepoint location is random rather than fixed.
Let π = (πk)k∈N∪{0} be the prior distribution of the changepoint location and define Pπ(A) :=∑∞

z=0 πzPz(A) for any measurable set A and Eπ the expectation under this distribution. The
corresponding patience measure of a procedure N under this framework is the probability
of false alarm (PFA): PFAπ(N) := Pπ(N ≤ z). Let Cπα be the clsss of detection procedures
with PFA at most α. The responsiveness measure is the average detection delay (ADD):
ADDπ(N) := Eπ[N − z | N > z]. Note again that in the above expressions, both N and z

are random.
When in the special case that the prior distribution π follows a geometric distribution with

πk = p(1− p)k for k ∈ N∪ {0}, the optimal procedure was found by Shiryaev (1961, 1963) by
computing the posterior probability of the changepoint location after each observation. More
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specifically, Shiryaev’s procedure

NS = NS(c) := inf

{
n ∈ N :

n∑
k=1

n∏
i=k

f1(Xi)

(1− p)f0(Xi)
≥ c
}

with threshold c = cα such that PFAπ(NS(cα)) = α minimises ADDπ(N) among all N ∈ Cπα.
As in Page’s procedure, the tracked statistic in Shiryaev’s procedure could also be calculated
recursively. Let Zn :=

∑n
k=1

∏n
i=k

f1(Xi)
(1−p)f0(Xi)

. Then, we have Zn = (1 + Zn−1)
f1(Xn)

(1−p)f0(Xn)
,

with Z0 := 0.
Taking p = 0 in the definition of the Shiryaev’s procedure, we arrive at the Shiryaev–

Roberts (SR) procedure (Roberts, 1966):

NSR = NSR(c) := inf

{
n ∈ N :

n∑
k=1

n∏
i=k

f1(Xi)

f0(Xi)
≥ c
}

= inf{n ∈ N : Zn ≥ c},

where here Zn := (1 + Zn−1)f1(Xn)/f0(Xn) with Z0 := 0. The geometric prior discussed in
the last paragraph now becomes an improper uniform prior on N ∪ {0}. The SR procedure
is optimal (Pollak and Tartakovsky, 2009), subject to a constraint on ARL(N), in terms of
another responsiveness measure, the integral average detection delay (IADD):

IADD(N) :=

∑∞
z=0 Ez

[
(N − z) ∨ 0

]
E∞N

.

This quantity could be understood as a limit of ADDπ(N) as p→ 0 in the family of geometric
prior distributions. Since the definition of IADD does not explicitly contain Bayesian elements,
the SR procedure could be viewed as a bridge between the Bayesian and minimax frameworks.

A few variants were proposed and analysed in order to understand the theoretical behaviour
of the SR procedure more thoroughly. The SR-r procedure (Moustakides, Polunchenko and
Tartakovsky, 2011) changed the initial value of the tracked statistic (Zn)n∈N∪{0} to another
deterministic value Z0 := r, while the Shiryaev–Roberts–Pollak (SRP) procedure (Pollak, 1985)
used a random initialisation with a quasi-stationary distribution. Pollak (1985) established
the near optimality of the SRP procedure in the sense that

SCADD(NSRP(cγ))− inf
N∈Cγ

SCADD(N) = o(1)

as γ → ∞, where NSRP(cγ) is the SRP procedure with threshold cγ chosen to satisfy
ARL(NSRP) = γ. The strict optimality under the SCADD criterion, however, is achieved by
the SP-r procedure, with a particular choice of r (Polunchenko and Tartakovsky, 2010).
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Another frequently used approach to tackle sequential changepoint detection problem is
the window limited moving average scheme:

NMA = NMA(w, c) := inf

{
n ∈ N : n ≥ w and

n∑
i=n−w+1

log
f1(Xi)

f0(Xi)
≥ c
}
.

Lai (1995) showed that, by choosing threshold c = log γ and a window size m which satisfies
w ∼ (log γ)/D(f1∥f0) and

{
w − (log γ)/D(f1∥f0)

}
/
√
log γ → ∞ as γ → ∞, the proce-

dure has the desired patience level ARL(NMA(w, c)) ≥ γ, and is asymptotically optimal:
ESADD(NMA(w, c)) ∼ (log γ)/D(f1∥f0) as γ →∞.

1.2.3 Unknown post-change parameter

In the last section, we have assumed that both the pre- and post-change densities to be known.
However, this might be too restrictive. For simplicity, we now consider the case that the post-
change density belongs to an exponential family {fθ(x) = exp{θx−K(θ)}f0(x) : θ ∈ Θ\{0}},
where f0 is the known pre-change density.

One natural way to take into account a wide range of choices of the unknown parameter
is to use the generalised likelihood ratio. We can conveniently modify (1.6) to form the GLR
schemes:

NGLR = NGLR(Θ1, c) := inf

{
n ∈ N : max

1≤k≤n
sup
θ∈Θ1

n∑
i=k

log
fθ(Xi)

f0(Xi)
≥ c
}
.

We note that Θ1 need not to be the same as the entire parameter space Θ. Lorden (1971)
studies the case of Θ being an interval on the real line including 0. Then, by choosing
Θ1 = {θ : |θ| ≥ hγ} with hγ ∼ log−1 γ and a suitable threshold c = cγ , the procedure (denoted
as NGLR,L for convenience) satisfies E∞NGLR,L ≥ γ and as γ →∞

ESADDθ(NGLR,L) ∼
log γ

D(fθ∥f0)

for all θ ∈ Θ \ {0}. Instead of taking the maximum likelihood over Θ1, an alternative way is
to take the ‘average’ log likelihood. This leads to mixture detection procedures (Pollak and
Siegmund, 1975):

NGLR = NGLR(Θ1,Λ, c) := inf

{
n ∈ N : max

1≤k≤n

∫
Θ1

n∑
i=k

log
fθ(Xi)

f0(Xi)
dΛ(θ) ≥ c

}
,

where Λ(·) is a probability distribution on Θ1. The optimality result about mixture detection
procedures was established by Pollak (1978).
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Although Lorden’s GLR procedure could be implemented by tracking and updating only a
small number of quantities (e.g. in univariate Gaussian case, this is O(log3 γ)), GLR schemes
and mixture detection procedures, in general, are not computationally friendly.

1.2.4 An alternative sequential paradigm

A second sequential paradigm was introduced by Chu, Stinchcombe and White (1996). Instead
of controlling the average run length under the null (no change), we aim to find procedures that
have (asymptotic) control of the probability of type I error P∞(N <∞) and have (asymptotic)
power 1 when a change is present. This approach often requires a non-contaminated or stable
historical dataset. Changes in both univariate mean structure and linear regression parameters
have been studied extensively under this paradigm (Aue and Horváth, 2004; Horváth et al.,
2004; Aue et al., 2006; Kirch, 2008). The type I error control requirement is very different
from the ARL constraint introduced in Section 1.2.2. In fact, this paradigm puts a heavier
penalty on any false alarm. Many classic procedures discussed in Section 1.2.2 can not be
considered under this paradigm since they all have P∞(N <∞) = 0.

Yu et al. (2020) proposed a sequential detection procedure for the univariate mean change
problem based on the offline CUSUM statistic (1.1), and provided its theoretical guarantees
under both sequential paradigms. They showed that the procedure has the control of the
probability of a type I error or the average run length under the null and achieves the minimax
rate of detection delay, up to a logarithmic factor. However, unlike in Chu, Stinchcombe and
White (1996), their proposed procedure does not require an initial stable dataset to work
with. Their work provides a middle ground between the two paradigms. A faster algorithm
implementing this procedure when the pre-change mean is unknown was proposed by Romano
et al. (2022).

1.2.5 The multivariate and high-dimensional settings

There is a paucity of prior literature on multivariate/high-dimensional, sequential changepoint
problems, though the field is gathering momentum in recent years. Tartakovsky et al. (2006),
Mei (2010) and Zou et al. (2015) all proposed methods to the multivariate problem, where the
dimension p is assumed to be fixed. For example, Mei (2010) considered using the statistic in
Page’s procedure (1.6) for each coordinate. Write Xi := (X1,i, . . . , Xp,i)

⊤ ∈ Rp for i ∈ N and
denote

Z
j,θj
n := max

1≤k≤n

n∑
i=k

log
fθj (Xj,i)

f0(Xj,i)
,

for j ∈ {1, . . . , p} and θj ∈ R. The two statistics considered in this paper are the sum statistic
Zsum :=

∑p
j=1 Z

j,θj
n and the maximum statistic Zmax := maxj∈{1,...,p} Z

j,θj
n . A change is

declared when either statistic exceeds given thresholds. A dense change will be detected by
the sum statistic while a sparse one will be picked up by the maximum statistic. The ARL



1.2 Sequential changepoint problem 17

and ESADD of the procedure using the sum statistic are also analysed in this work. However,
these aforementioned works focused either on the case where both the pre- and post-change
distributions are exactly known, or where, for each coordinate, both the sign and a lower
bound on the magnitude of change, are known in advance. The amount of information about
the post-change distribution required can be unrealistic.

A number of methods that involve scanning a moving window of fixed size for changes have
also been proposed. Both Xie and Siegmund (2013) and Chan (2017) used mixture procedures
to monitor multivariate data, and are similar in nature. Here, we summarise the contribution
of Xie and Siegmund (2013) only. The basic idea is to reduce the changepoint problem to the
following sequential testing task using the tail observations. Let B1, . . . , Bp

iid∼ Bernoulli(p0)

for some known p0 ∈ [0, 1]. We test the null (Xi)i∈N where Xi
iid∼ Np(0, Ip) against an

alternative of a mixture distribution, where for each coordinate j ∈ {1, . . . , p}, independently,
(Xj,i)i∈N satisfies

Xj,i | Bj
iid∼ N

(
µj1{Bj=1}, 1

)
,

for some unknown µj ∈ R. The quantity p0 is an estimate of the proportion of series affected
by the change. The maximum likelihood estimate of the post-change mean is then used to
complete the construction:

NXS := inf

{
n ∈ N : max

1≤k≤n

p∑
j=1

log
(
1− p0 + p0e

{max(Zn,k,j ,0)}2
)}

,

where Zn,k,j := k−1/2
∑n

i=n−k+1Xj,i for n ∈ N, k ∈ {1, . . . , n} and j ∈ {1, . . . , p}. A window
limited version of the procedure could be used here by replacing max1≤k≤n with max1≤k≤w in
the above expression, where w is the window size. This can reduce the memory requirements
when implementing the procedure. As mentioned in Section 1.1.2, Soh and Chandrasekaran
(2017) proposed an efficient multiple changepoint detection procedure for high-dimensional
sparse signals. The procedure is constructed in a sequential manner. At each time step, we
first calculate the sample mean using sample from a rolling window of size w. A denoising step
which requires solving a convex optimisation problem is then applied before differencing. The
output from the denoising step gives a better estimate of the true signal than the raw sample
mean. These moving window methods can be effective when the signal-to-noise ratio is large
enough that the change can be detected within the prescribed window, but may experience
excessive response delay in other cases. Of course, the window size may be increased to
compensate, but this correspondingly increases the computational complexity and storage
requirements.

The high-dimensional problem has also been recently studied under the alternative
sequential paradigm (Chu, Stinchcombe and White, 1996). Gösmann et al. (2020) and
Gösmann, Kley and Dette (2021) used likelihood ratio based weighted CUSUM statistics
and the ℓ∞ aggregation to construct a sequential procedure for closed-end and open-end
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monitoring respectively. In the close-end scenario (i.e. there is a fixed endpoint for monitoring),
the test statistic converges weakly to a Gumbel random variable under the null, as both the
dimension p and the sample size of the initial stable dataset m tend to infinity.

1.3 Inference for changepoints

In this section, we review the existing works that address statistical inference for multiple
changepoints. Many questions regarding uncertainty quantification can be asked. Here, we
mainly focus on the literature whose aim is to provide confidence intervals/sets/statements
about the locations of changepoints.

One approach is to provide confidence sets associated with Simultaneous Multiscale
Changepoint Estimation (SMUCE), proposed by Frick, Munk and Sieling (2014). This work
lays the foundation for future works in inferential aspects of multiple change points, where
previous literature had been quite scarce. In this work, it is assumed that the observations
follow

Xi
ind∼ Fφ(i/n), i = 1, . . . , n,

where (Fθ)θ∈Θ is a one-dimensional known exponential family and ϑ : [0, 1] → Θ is a right
continuous step function (also known as the regression function) with ν changepoints, where ν
is unknown. SMUCE first estimates ν by minimising the ‘number of changes’ over all possible
regression functions, subject to a log-likelihood ratio based multiscale statistic being below a
certain threshold q. The minimal value ν̂(q) gives the estimated number of change points and
a confidence set (band) C(q) for the true regression function is given by the set of all functions
that are optimisers of the above optimisation problem, i.e. regression functions that have ν̂(q)
many changepoints and satisfy the constraint. The SMUCE estimator ϑ̂(q) for the regression
function is then the constrained maximum likelihood estimator within the confidence set C(q).
In addition, by inspecting the changepoint locations of the regression functions in C(q), we
can produce simultaneous confidence intervals for changepoint locations.

The most crucial component of SMUCE is having a good estimate of the number of
changepoints, as both the changepoint estimation and the uncertainty quantification rely
heavily on it. Given a desired probability level α, the threshold q = qα can be chosen to
provide asymptotic control of the probability of overestimating the number of changepoints
by α, while an exponential bound on the probability of underestimation is also derived. Based
on these bounds, the confidence band for the regression function and the confidence intervals
for changepoint locations have the desired (asymptotic) (1− α)-coverage.

SMUCE can be used to study Gaussian observations with fixed and known (or estimated)
variance σ2 and piecewise constant mean. In fact, sharper and non-asymptotic theoretical
results are possible under Gaussian settings. Pein, Sieling and Munk (2017) extended this
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methodology to handle the heterogeneous Gaussian change point model, while Dette, Eckle
and Vetter (2020) proposed a similar procedure for dependent data.

Recall that by choosing a suitable threshold q = qα, SMUCE controls P(ν̂(q) > ν) at level
α asymptotically. This could also be viewed as a family-wise error rate (FWER) control.
Though a corresponding theoretical result was provided on bounding the probability of
underestimation, in practice when there are many changepoints or when the signal to noise
ratio is small, the issue of underestimating ν could be magnified and affects the coverage of
the confidence set and intervals. The problem of underestimation could also arise when the
significance level α is small.

One way to overcome this is to use the false discovery rate (FDR) control instead. The
rich history of FDR control in multiple testing dates back to Benjamini and Hochberg (1995).
Here, we again work with Gaussian observations with fixed variance and piecewise constant
mean and follow the framework described in Li, Munk and Sieling (2016). Consider the
following multiple testing problem under the setting of changepoint detection:

Hi,0 : i is not a changepoint, v.s. Hi,1 : i is a changepoint i = 1, . . . , n− 1,

Let {ẑ1, . . . , ẑν̂} denote all rejections/estimated changepoint locations. Intuitively, a rejection
should be identified as a true discovery if it is ‘close’ to one of the true changepoints, and a
false discovery otherwise. Several different notions are used to quantify closeness in literature.
The first one is to use a uniform accuracy (Hao, Niu and Zhang, 2013; Cheng, He and
Schwartzman, 2020). We say that ẑi is a true discovery if it is within distance h of one of the
true changepoints:

min
1≤j≤ν

|ẑi − zj | ≤ h,

where h is a pre-specified threshold, and z1, . . . , zν are true changepoints. This notion gives
immediate guarantees on the accuracy of the estimated changepoint locations. However,
choosing a good threshold h can be quite tricky in practice, as large values work well for
long segments in between the changepoints, while small values are better for short segments.
Another major drawback is that there could be many true discoveries corresponding to one
single true changepoint, which almost certainly leads to an overestimation of the number of
changepoints. An alternative notion is proposed by Li, Munk and Sieling (2016). We say that
ẑi is a true discovery if there exists a true changepoint within the interval[⌈

ẑi−1 + ẑi
2

⌉
,

⌈
ẑi + ẑi+1

2

⌉)
.

Since the intervals are disjoint for each i, it is guaranteed that there is at most one true
discovery per true changepoint. This overcomes one drawback of using the uniform accuracy.
The downside, however, is that we are sacrificing the accuracy of estimated changepoint
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locations – we allow a bigger gap (as big as almost n/2 in the most extreme case) between
‘true discoveries’ and true changepoints. Recall that FDR is defined to be the expectation
of the false discovery proportion (FDP), where FDP equals the number of false discoveries
divided by the total number of estimated changepoints (or 1 if zero estimated changepoint).

Based on the first notion of closeness, Hao, Niu and Zhang (2013) studied the Screening
and Ranking algorithm (SaRa), first introduced by Niu and Zhang (2012) and proved the
FDR control for the algorithm. Cheng, He and Schwartzman (2020) proposed a changepoint
detection algorithm based on kernel smoothing and testing maxima and minima (dSTEM).
This procedure also achieves asymptotic control of the FDR and power consistency. Using the
alternative approach, Li, Munk and Sieling (2016) extended SMUCE and proposed a multiscale
segmentation method (FDRSeg), which again controls the FDR. It is worth mentioning that
though using the alternative approach, the FDRSeg algorithm still enjoys high accuracy in
changepoint location estimation in the theoretical analysis.

In Section 1.1, we have introduced various offline multiple changepoint detection procedures
and their corresponding test statistics. Many of these works include consistency results (when
sample size n tends to infinity) for the number and locations of estimated changepoints; some
also have finite sample bound results (e.g. Wang and Samworth, 2018). However, these results
cannot be directly translated into confidence interval construction as the rate of convergence
often involves unknown quantities such as minimum gap between changepoints and/or a lower
bound on the change magnitude. In some cases, inferential tasks are still possible when the
asymptotic or approximate distribution of the test statistics under the null hypothesis of no
change can be derived, (e.g. Eichinger and Kirch, 2018; Fang, Li and Siegmund, 2020). For a
given number of changepoints, using the relations between confidence intervals and hypothesis
tests, we can construct joint asymptotic confidence regions for changepoint locations and
means.

The moving sum (MOSUM) procedure introduced in Section 1.1 is another popular
and easily implemented method in multiple changepoint detection. Moreover, MOSUM
inherently contains some level of inferential arguments about the number and locations of the
changepoints, in that if Mt defined in (1.2) exceeds the prescribed threshold, then with high
probability there is a true changepoint within the interval [t+ 1−G, t+G]. As mentioned
in the last paragraph, Eichinger and Kirch (2018) derived the asymptotic behaviour of the
MOSUM statistics under the null. Cho and Kirch (2021) recently proposed a bootstrap
procedure to construct confidence intervals for multiple changepoints and proved that these
intervals attain asymptotic coverage. The method has its origins in Antoch, Hušková and
Veraverbeke (1995) for the single changepoint setting.

Another set of articles works in the framework of post-selection inference, also known as
selective inference (Hyun, G’Sell and Tibshirani, 2018; Duy et al., 2020; Hyun et al., 2021;
Jewell, Fearnhead and Witten, 2022). Again, we consider univariate Gaussian observations
of sample size n: X = (X1, . . . , Xn)

⊤ ∈ Rn with independent Xi ∼ N (µi, σ
2), where
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µ = (µ1, . . . , µn)
⊤ is an unknown piecewise constant vector. One basic post-selection inference

procedure adapted to our changepoint setting can be described as follows:

1. Given data X, use a base changepoint detection algorithm to detect k changepoints:
0 = ẑ0 < ẑ1 < . . . < ẑk < ẑk+1 = n.

2. Determine contrast vectors v1, . . . , vk such that v⊤j x = x̄(ẑj+1):ẑj+1
− x̄(ẑj−1+1):ẑj for any

vector x ∈ Rn. This is the sample mean difference between the segment to the right
and to the left of the estimated changepoint.

3. For each j, test the null hypothesis H0,j : v
⊤
j µ = 0 using a test statistic T (X, vj), which

incorporates knowledge from both previous steps.

4. (Optional) Correct for multiple testing.

In the first step, k is usually the number of steps/iterations of an algorithm. The choice of k
could be data-driven. Other contrast vectors are possible in step 2, such as a spike contrast.
Extra information such as estimated directions of change is often included in the output of
the changepoint detection algorithm and the contrast vectors as well. The core quantity in
post-selection inference is the selective distribution

v⊤X
∣∣∣ {M(X) =M(x), q(X) = q(x)

}
under the null, where M(x) is the changepoint model selected by the base algorithm using
observed data x and q(X) is an extra vector of sufficient statistic of nuisance parameters
included for tractability. The conditioning set above needs to be a polyhedron in order to
apply the post-selection inference tools from Lee et al. (2016) and Tibshirani et al. (2016).

Hyun, G’Sell and Tibshirani (2018) studied using 1d fused lasso to estimate k changepoints.
The framework can also be applied to trend filtering (Tibshirani, 2014) and graph clustering
via graph fused lasso (Tibshirani and Taylor, 2011). Hyun et al. (2021) then studied a similar
procedure, but considered other base multiple changepoint detection methods including Binary
Segmentation (Vostrikova, 1981), Circular Binary Segmentation (Olshen et al., 2004) and Wild
Binary Segmentation (Fryzlewicz, 2014). Jewell, Fearnhead and Witten (2022) considered
using ℓ0 penalisation for changepoint detection. The authors also gained power from theirs
tests by conditioning on much less information than Hyun et al. (2021) and removing the
polyhedron conditioning set requirement.

One drawback of the post-selection inference for multiple changepoints framework is that
these methods usually focus on individual/local significance for each estimated changepoint,
rather than a global statement. In addition, over-conditioning remains a big issue, as the
resulting procedures will not be very powerful. Duy et al. (2020) and Jewell, Fearnhead and
Witten (2022) discussed this issue in more detail and attempted to reduce the amount of
conditioning.
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Recent contributions to the multiple changepoint inference problem also include Fryzlewicz
(2021a,b). The Narrowest Significance Pursuit (NSP) methodology proposed in Fryzlewicz
(2021a) detects localised regions, each of which contains at least one changepoint, at a given
global significance level. The robust variation of the algorithm (Fryzlewicz, 2021b) provides a
better way to handle data with a more general heterogeneous noise structure.

Inference for multiple changepoint has also been studied from Bayesian approaches (e.g.
Fearnhead, 2006; Nam, Aston and Johansen, 2012).

1.4 Notation

For the rest of this thesis, we will use the following notation. We write N0 for the set of
all non-negative integers. For d ∈ N, we write [d] := {1, . . . , d}. Given a, b ∈ R, we denote
a∨b := max(a, b) and a∧b := min(a, b). For a set S, we use 1S and |S| to denote its indicator
function and cardinality respectively. For a real-valued function f on a totally ordered set
S, we write sargmaxx∈S f(x) := min argmaxx∈S f(x), the smallest maximiser of f in set
S, and similarly we write sargminx∈S f(x) := min argminx∈S f(x), and largmaxx∈S f(x) :=

max argmaxx∈S f(x). For a vector v =
(
v1, . . . , vM

)⊤ ∈ RM , we define ∥v∥0 :=
∑M

i=1 1{vi ̸=0},

∥v∥2 :=
{∑M

i=1(v
i)2
}1/2 and ∥v∥∞ := maxi∈[M ] |vi|. In addition, for j ∈ [M ], we define

∥v−j∥2 :=
{∑

i:i ̸=j(v
i)2
}1/2. For a matrix A = (Ai,j) ∈ Rd1×d2 and j ∈ [d2], we write

A·,j :=
(
A1,j , . . . , Ad1,j

)⊤ ∈ Rd1 and A−j,j :=
(
A1,j , . . . , Aj−1,j , Aj+1,j . . . , Ad1,j

)⊤ ∈ Rd1−1.
We use Φ(·), Φ̄(·) and φ(·) to denote the distribution function, survivor function and density
function of the standard normal distribution respectively. For two real-valued random variables
U and V , we write U ≥st V or V ≤st U if P(U ≤ x) ≤ P(V ≤ x) for all x ∈ R. We adopt
conventions that an empty sum is 0 and that min ∅ :=∞, max ∅ := −∞.



Chapter 2

A high-dimensional, multiscale online
changepoint detection procedure

2.1 Introduction

In this chapter, we are interested in developing algorithms for detecting changepoints in
high-dimensional data that are observed sequentially. Moreover, we focus on online algorithms.
Recall from Chapter 1 that an sequential procedure is online if the computational complexity
for processing a new observation, as well as the storage requirements, depend only on the
number of bits needed to represent the new observation.

To set the scene for our contributions, let X1, X2, . . . be a sequence of independent random
vectors in Rp. Assume that for some unknown, deterministic time z ∈ N0, the sequence is
generated according to

X1, . . . , Xz ∼ Np(µ−, Ip) and Xz+1, Xz+2, . . . ∼ Np(µ+, Ip), (2.1)

for some µ−, µ+ ∈ Rp. When µ+ ̸= µ−, we say that there is a changepoint at time z. In many
applications, such as in industrial quality control where the distribution of relevant properties
of goods in a manufacturing process under regular conditions may be well understood, we
may assume that the mean before the change is known (or at least can be estimated to high
accuracy using historical data). However, the vector of change, θ := µ+ − µ−, is typically
unknown. Thus, for simplicity, we will work in the setting where µ− = 0 and µ+ = θ. Let
Pz,θ denote the joint distribution of (Xn)

∞
n=1 under (2.1) and Ez,θ the expectation under this

distribution. Note that when θ = 0, the joint distribution of the data does not depend on z,
and we therefore let P0 = Pz,0 denote this joint distribution (with corresponding expectation
E0). We will then say that the data is generated under the null. By contrast, if θ ≠ 0, we
will say that the data is generated under the alternative, though we emphasise that in fact
the alternative is composite, being indexed by z ∈ N0 and θ ∈ Rp \ {0}. In practice, in order
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for our procedure to have uniformly non-trivial power, it will be necessary to work with a
subset of the alternative hypothesis parameter space that is well-separated from the null, in
the sense that the ℓ2-norm of the vector of mean change, ϑ := ∥θ∥2, is at least a known lower
bound β > 0.

Recall from Section 1.2 that a sequential changepoint procedure is an extended stopping
time (with respect to the natural filtration) taking values in N ∪ {∞}. Then, following the
concepts introduced in Section 1.2.2, we define the patience of a sequential changepoint
procedure N to be E0(N), and its worst-case response delay to be

Ēwc
θ (N) := sup

z∈N0

ess supEz,θ
{
(N − z) ∨ 0 | X1, . . . , Xz

}
.

While controlling the worst-case response delay provides a very strong theoretical guarantee
of the average detection delay of the procedure, even under the worst possible pre-change
data sequence, obtaining a good bound for this quantity is often difficult. We therefore also
consider the average-case response delay, or simply the response delay of a procedure N ,
defined as

Ēθ(N) := sup
z∈N0

Ez,θ
{
(N − z) ∨ 0

}
.

We note that Ēθ(N) ≤ Ēwc
θ (N). A good sequential changepoint procedure should have

small worst- and average-case response delays, uniformly over the relevant class of alternatives
{Pz,θ : (z, θ) ∈ (N ∪ {0})×Rp, ∥θ∥2 ≥ β}, subject to its patience being at least some suitably
large, pre-determined γ > 0. Finally, as mentioned above, we are interested in sequential
changepoint procedures that are online, so that the computational complexity per additional
observation should be a function of p only.

Our main contribution in this work is to propose, in Section 2.2, a new algorithm called ocd

(short for online changepoint detection), for high-dimensional, online changepoint detection
in the above setting. The procedure works by performing likelihood ratio tests against
simple alternatives of different scales in each coordinate, and then aggregating test statistics
across scales and coordinates for changepoint detection. The ocd algorithm has worst-case
computational complexity O

(
p2 log(ep)

)
per new observation, so satisfies our requirement for

being an online algorithm. In fact, as we explain in Section 2.2.1, the algorithmic complexity
is often even better than this. Moreover, as we illustrate in Section 2.4, it has extremely
effective empirical performance. In terms of theoretical guarantees, it turns out to be more
convenient to analyse a slight variant of our initial algorithm, which we refer to as ocd′. This
has the same order of computational complexity per new observation as ocd, but enables us
to ensure that whenever we are yet to declare that a change has occurred, only post-change
observations contribute to the running test statistics. In practice, the original ocd algorithm
also appears to have this property for typical pre-change sequences, and we argue heuristically
that there is a sense in which it is more efficient than ocd′ by a factor of at most 2.
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Our theoretical analysis in Section 2.3 initially considers separately versions of the ocd′

algorithm best tuned towards settings where the vector θ of change is dense, and where it is
sparse in an appropriate sense. We then present results for a combined, adaptive procedure
that seeks the best of both worlds. In all cases, the appropriate version of ocd′ has guaranteed
patience, at least at the desired nominal level. In the (small-change) regime of primary
interest, and when ϑ is of the same order as β, the response delay of ocd′ is of order at most
√
p/ϑ2 in the dense case, up to a poly-logarithmic factor; this can be improved to order s/ϑ2,

again up to a poly-logarithmic factor, when the effective sparsity of θ is s < √p.
Numerical results illustrate the performance of our ocd algorithm in Section 2.4. Proofs

of our main results are given in Section 2.5. All the auxiliary lemmas and their proofs are
provided in Section 2.6.

2.2 An online changepoint procedure

2.2.1 The ocd algorithm

In this section, we describe our online changepoint procedure, ocd, in more detail. As
mentioned in the introduction, the procedure aggregates likelihood ratio test statistics against
simple alternatives of different scales in different coordinates. For i ∈ [n] and j ∈ [p], we write
Xj
i for the jth coordinate of Xi. Recall from Section 1.2.2 that if we want to test a null of
N (0, 1) against a simple post-change alternative distribution of N (b, 1) for some b ̸= 0 in
coordinate j ∈ [p], by Page (1954), the optimal online changepoint procedure is to declare
that a change has occurred by time n when the test statistic

Rjn,b := max
0≤h≤n

n∑
i=n−h+1

b(Xj
i − b/2) (2.2)

exceeds a certain threshold. Note that
∑n

i=n−h+1 b(X
j
i − b/2) can be viewed as the likelihood

ratio test statistic between the null and this simple alternative using the tail sequence
Xn−h+1, . . . , Xn. Thus Rjn,b can be regarded as the most extreme of these likelihood ratio
statistics, over all possible starting points for the tail sequence. Write

tjn,b := sargmax
0≤h≤n

n∑
i=n−h+1

b(Xj
i − b/2) (2.3)

for the length of the tail sequence in which the associated likelihood ratio statistic (in the
jth coordinate) is maximised. One way to aggregate across the p coordinates would be to
use

∑p
j=1R

j
n,b as a test statistic. However, this approach is not ideal for two reasons. Firstly,

the exact distribution of the tail likelihood ratio statistic Rjn,b is hard to obtain, making it
difficult to analyse the aggregated statistic under the null. More importantly, this aggregated
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statistic uses the same simple alternative N (b, 1) in all coordinates, and so even after varying
the magnitude of b, it is only effective against a very limited set of alternative distributions in
{Pz,θ : z ∈ N, ∥θ∥2 ≥ β}, namely those for which the change is of very similar magnitude in
all coordinates. In order to overcome these problems, our procedure uses the coordinate-wise
statistics (Rjn,b : j ∈ [p]), which we call ‘diagonal statistics’, to detect changes that have a
large proportion of their signal concentrated in one coordinate. To detect denser changes, for
each j ∈ [p], we also compute tail partial sums of length tjn,b in all other coordinates j′ ≠ j,
given by

Aj
′,j
n,b :=

n∑
i=n−tjn,b+1

Xj′

i ,

and aggregate them to form an ‘off-diagonal statistic’ anchored at coordinate j. Note that
the number of summands in Aj

′,j
n,b depends only on the observed data in the jth coordinate,

and not on the data being aggregated in the j′th coordinate. These off-diagonal statistics are
used to detect changes whose signal is not concentrated in a single coordinate. Intuitively, if
a change has occurred and θj/b ≥ 1, then we can expect the tail length in coordinate j to
be roughly of order n− z for sufficiently large n, and this will ensure that the off-diagonal
statistic anchored at coordinate j is close to the generalised likelihood ratio test statistic
between the null and the composite alternative {Pz,θ : ∥θ∥2 ̸= 0}. If, in addition, a non-trivial
proportion of the signal is contained in coordinates [p]\{j}, then this statistic will be powerful
for detecting the change.

The full description of the ocd procedure is given in Algorithm 2.1. Note that for notational
simplicity, we have suppressed the time dependence of many variables as they are updated
recursively in the algorithm. In the following, when necessary, we will make this dependence
explicit by writing An,b, tn,b, Qn,b, S

diag
n and Soff

n for the relevant quantities at the end of the
nth iteration of the repeat loop.

The algorithm takes inputs X1, X2, . . . ∈ Rp, observed sequentially, a known lower bound
β > 0 for the ℓ2-norm of the vector of mean change, a hard thresholding level a ≥ 0 that
can be chosen to detect dense or sparse signals, and two declaration thresholds T diag > 0

and T off > 0. We define sets of signed scales B :=
{
± β√

2ℓ log2(2p)
: ℓ = 0, . . . , ⌊log2 p⌋

}
and

B0 :=
{
± β√

2⌊log2 p⌋+1 log2(2p)

}
.

When a new observation Xn arrives, we first update

A·,j
n,b := A·,j

n−1,b +Xn

tjn,b := tjn−1,b + 1

for (j, b) ∈ [p] × B ∪ B0. We then reset both A·,j
n,b and tjn,b to 0 if bAj,jn,b − b

2tjn,b/2 ≤ 0. By
Lemma 2.10, bAj,jn,b − b

2tjn,b/2 is equal to the quantity Rjn,b defined in (2.2) (we will also
suppress its n dependence when it is clear from the context). Moreover, by Lemma 2.11, the
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two definitions of tjn,b from Algorithm 2.1 and (2.3) coincide. In the algorithm, we allow b to
range over the (signed) dyadic grid B ∪ B0, since the maximal signal strength in individual
coordinates, ∥θ∥∞, can range from ϑ/

√
p to ϑ. In this way, the algorithm automatically

adapts to different signal strengths in each coordinate. Here, the inclusion of B0 and the extra
logarithmic factors in the denominators of elements of B ∪ B0 appear due to technical reasons
in the theoretical analysis of the algorithm.

Algorithm 2.1 uses Sdiag and Soff to aggregate diagonal and off-diagonal statistics respec-
tively as mentioned above, and declares that a change has occurred as soon as either of these
quantities exceeds its own pre-determined threshold. As mentioned previously, Sdiag tracks
the maximum of Rjb over all scales b and coordinates j. Before introducing Soff , we first
discuss the off-diagonal statistics Qjb in Algorithm 2.1, which are ℓ2 aggregations of normalised

tail sums Aj
′,j
b /

√
tjb ∨ 1, each hard-thresholded at level a:

Qjn,b :=
∑

j′∈[p]:j′ ̸=j

(Aj
′,j
n,b )

2

tjn,b ∨ 1
1{

|Aj′,j
n,b |≥a

√
tjn,b

}. (2.4)

The hard thresholding level can be chosen to detect dense or sparse signals θ; in the sparse
case a non-zero a facilitates an aggregation that aims to exclude coordinates with negligible
change (thereby reducing the variance of the normalised tail sums). Finally, Soff is computed
as the maximum of the Qjb over all anchoring coordinates j ∈ [p] and scales b ∈ B.

Although the off-diagonal statistics described in the previous paragraph are effective for
detecting changes when the signal sparsity is known, it is desirable to the practitioner to have a
combined procedure that adapts to the sparsity level. This may be computed straightforwardly
by tracking Soff for a = adense and a = asparse, as well as Sdiag, and declaring a change when
any of these three statistics exceeds a suitable threshold. Figure 2.1 illustrates the performance
of this adaptive procedure, together with the time evolution of normalised versions of all
three statistics tracked, in synthetic datasets both with and without a change. This adaptive
procedure is analysed theoretically in Section 2.3.3 and empirically in Section 2.4.

The ocd procedure satisfies our definition of an online algorithm. Indeed, for each new
observation Xn, ocd updates tn,b ∈ Rp and An,b ∈ Rp×p for O

(
log(ep)

)
different values

of b. It then computes Sdiag
n and Soff

n via An,b. These steps require O
(
p2 log(ep)

)
operations.

Moreover, the total storage used is O
(
p2 log(ep)

)
throughout the algorithm.

In fact, the computational complexity of ocd can often be reduced, because typically
T := {tjb : j ∈ [p], b ∈ B} has cardinality much less than p|B| (which is the worst case,
when all elements are distinct). Correspondingly, at each time step, we need only store the
p× |T | matrix (Bk,t)k∈[p],t∈T given by Bk,tjb := Ak,jb , resulting in an improved per-iteration
computational complexity and storage for ocd of O(p|T |). For simplicity of exposition, we
have not presented this computational speed-up in Algorithm 2.1. We remark that Romano
et al. (2022) recently provided some insights into the size of the set T . Nevertheless we have
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Fig. 2.1 Behaviour of the three normalised statistics in ocd under the null and under the
alternative with different signal strength, sparsity level and assumed lower bound. A change
is declared as soon as one of these three normalised statistics exceeds 1. The data were
generated in the top-left panel according to P0, and, in the other panels, according to Pz,θ,
with p = 100, z = 300 and θ = ϑU , where U is uniformly distributed on the union of all
s-sparse unit spheres in Rp (see Section 2.4.2 for a more detailed description).
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implemented the algorithm in this form in the R package ocd (Chen, Wang and Samworth,
2020), and have found it to provide substantial computational savings in practice.

Algorithm 2.1: Pseudo-code of the ocd algorithm
Input: X1, X2 . . . ∈ Rp observed sequentially, β > 0, a ≥ 0, T diag > 0 and T off > 0

Set: B =
{
± β√

2ℓ log2(2p)
: ℓ = 0, . . . , ⌊log2 p⌋

}
, B0 =

{
± β√

2⌊log2 p⌋+1 log2(2p)

}
, n = 0,

Ab = 0 ∈ Rp×p and tb = 0 ∈ Rp for all b ∈ B ∪ B0
repeat

n← n+ 1
observe new data vector Xn

for (j, b) ∈ [p]× (B ∪ B0) do
tjb ← tjb + 1

A·,j
b ← A·,j

b +Xn

if bAj,jb − b
2tjb/2 ≤ 0 then

tjb ← 0 and A·,j
b ← 0

compute Qjb ←
∑

j′∈[p]:j′ ̸=j
(Aj′,j

b )2

tjb∨1
1{

|Aj′,j
b |≥a

√
tjb

}
Sdiag ← max(j,b)∈[p]×(B∪B0)

(
bAj,jb − b

2tjb/2
)

Soff ← max(j,b)∈[p]×BQ
j
b

until Sdiag ≥ T diag or Soff ≥ T off ;
Output: N = n

2.2.2 A slight variant of ocd

While the ocd algorithm performs very well numerically, it turns out to be easier theoretically
to analyse a slight variant, which we call ocd′, and describe in Algorithm 2.2. Again, we have
suppressed the time dependence n of many variables including τn,b, τ̃n,b,Λn,b and Λ̃n,b in the
algorithm. The main difference between these two algorithms is that in ocd′, the off-diagonal
statistics Qjb are computed using tail partial sums of length τ jb instead of tjb. These new tail
partial sums are recorded in Λb ∈ Rp×p.

By Lemma 2.19, we always have

tjb/2 ≤ τ
j
b < 3tjb/4 (2.5)

whenever tjb ≥ 2. In this sense, the tail sample size used by ocd′ is smaller than that of ocd
by a factor of at most 2. The benefit of using a shorter tail in ocd′ is that when n exceeds
a known, deterministic threshold, we can be sure that whenever we have not declared that
a change has occurred by time z, the tail partial sum consists exclusively of post-change
observations. In practice, we observe that even in Algorithm 2.1, the tail lengths tjz,b at
the changepoint are generally very short for many coordinates, so the inclusion of a few
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pre-change observations in the tail partial sum calculation does not significantly affect the
efficacy of the changepoint detection procedure. The practical performance of Algorithm 2.1
is statistically more efficient than Algorithm 2.2 in many settings by a factor of between 4/3

and 2, as suggested by (2.5). By construction, τ jb and Λ·,j
b are computable online, through

auxiliary variables τ̃ jb and Λ̃·,j
b . Indeed, Algorithm 2.2 is also an online algorithm, with overall

computational complexity per observation and storage remaining at O
(
p2 log(ep)

)
in the

worst case; similar computational improvements to those mentioned for ocd at the end of
Section 2.2.1 are also possible here.

Algorithm 2.2: Pseudo-code of the ocd′ algorithm, a slight variant of ocd
Input: X1, X2 . . . ∈ Rp observed sequentially, β > 0, a ≥ 0, T diag > 0 and T off > 0.
Set: B =

{
± β√

2ℓ log2(2p)
: ℓ = 0, . . . , ⌊log2 p⌋

}
, B0 =

{
± β√

2⌊log2 p⌋+1 log2(2p)

}
, n = 0,

Ab = Λb = Λ̃b = 0 ∈ Rp×p and tb = τb = τ̃b = 0 ∈ Rp for all b ∈ B ∪ B0
repeat

n← n+ 1
observe new data vector Xn

for (j, b) ∈ [p]× (B ∪ B0) do
tjb ← tjb + 1 and A·,j

b ← A·,j
b +Xn

set δ = 0 if tjb is a power of 2 and δ = 1 otherwise.
τ jb ← τ jb δ + τ̃ jb (1− δ) + 1 and Λ·,j

b ← Λ·,j
b δ + Λ̃·,j

b (1− δ) +Xn

τ̃ jb ← (τ̃ jb + 1)δ and Λ̃·,j
b ← (Λ̃·,j

b +Xn)δ.

if bAj,jb − b
2tjb/2 ≤ 0 then

tjb ← τ jb ← τ̃ jb ← 0

A·,j
b ← Λ·,j

b ← Λ̃·,j
b ← 0

compute Qjb ←
∑

j′∈[p]:j′ ̸=j
(Λj′,j

b )2

τ jb∨1
1{

|Λj′,j
b |≥a

√
τ jb

}
Sdiag ← max(j,b)∈[p]×(B∪B0)

(
bAj,jb − b

2tjb/2
)

Soff ← max(j,b)∈[p]×BQ
j
b

until Sdiag ≥ T diag or Soff ≥ T off ;
Output: N = n

2.3 Theoretical analysis

As mentioned in Section 2.2, the input a in Algorithms 2.1 and 2.2 allows users to detect
changepoints of different sparsity levels. More precisely, for any θ ∈ Rp, we have by Lemma 2.18
that there exists a smallest s(θ) ∈ {20, 21, . . . , 2⌊log2 p⌋} such that the set

S(θ) :=
{
j ∈ [p] : |θj | ≥ ∥θ∥2√

s(θ) log2(2p)

}
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has cardinality at least s(θ). On the other hand, we also have |S(θ)| ≤ s(θ) log2(2p). We call
s(θ) the effective sparsity of the vector θ and S(θ) its effective support. Intuitively, the sum of
squares of coordinates in the effective support of θ has the same order of magnitude as ∥θ∥22,
up to logarithmic factors. Moreover, if θ is an s-sparse vector in the sense that ∥θ∥0 ≤ s, then
s(θ) ≤ s, and the equality is attained when, for example, all non-zero coordinates have the
same magnitude.

In this section, we initially analyse the theoretical performance of Algorithm 2.2 for two
different choices of a in Soff = Soff(a), namely a = 0 and a =

√
8 log(p− 1). We then present

our combined, adaptive procedure and its performance guarantees. We note that the value of
the universal constant C may vary from theorem to theorem in this section.

Define Ndiag := inf{n : Sdiag
n ≥ T diag} and Noff = Noff(a) := inf{n : Soff

n (a) ≥ T off}.
Then the stopping time for our changepoint detection procedure is simply N = N(a) =

Ndiag ∧Noff(a).

2.3.1 Dense case

Here, we analyse the changepoint detection procedure N = N(0), which, as we will see, is
most suitable for detecting dense mean changes in the sense that s(θ) ≥ √p (though we do
not assume this in our theory). In this case, when p ≥ 2 and conditionally on τ jb , the quantity
Qjb follows a chi-squared distribution with p− 1 degrees of freedom under the null, provided
that τ jb is positive (When p = 1, we have that Qjb = 0 for all j ∈ [p] and b ∈ B, so Soff = 0

and the off-diagonal statistic never triggers the declaration of a change. Similarly, if p ≥ 2 but
τ jn,b = 0, then we also have Qjn,b = 0.). Motivated by the chi-squared tail bound of Laurent
and Massart (2000, Lemma 1), we choose a threshold of the form

T off := p− 1 + T̃ off +

√
2(p− 1)T̃ off =: ψ(T̃ off), (2.6)

say, for some T̃ off > 0.
The following theorem provides control of the patience of ocd′.

Theorem 2.1. Let X1, X2, . . . be generated according to P0. For any γ ≥ 1, let (Xt)t∈N, β > 0,
a = 0, T diag = log{16pγ log2(4p)} and T off = ψ

(
T̃ off) with T̃ off = 2 log{16pγ log2(2p)}

)
be

the inputs of Algorithm 2.2, with corresponding output N . Then E0(N) ≥ γ.

We note that either of the two statistics Sdiag and Soff may trigger a false alarm under
the null. The two threshold levels T diag and T off are chosen so that E0(N

diag) and E0(N
off)

have comparable upper bounds. We also remark that although Theorem 2.1 as stated only
controls the expected value of N under the null, careful examination of the proof reveals that
we can also control P0(N ≤ m) for every m ∈ N. More precisely, from (2.16) and (2.17) in
the proof, we can deduce that

P0(N ≤ m) ≤ m

4γ
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for every m ∈ N. The same bound holds for our other patience control results below, though
we omit formal statements for brevity.

Our next result controls the response delay of ocd′ in both worst-case and average senses.

Theorem 2.2. Assume that X1, X2, . . . are generated according to Pz,θ for some z and θ such
that ∥θ∥2 = ϑ ≥ β > 0 and that θ has an effective sparsity of s := s(θ). Then there exists a
universal constant C > 0, such that the output N from Algorithm 2.2, with inputs (Xt)t∈N, β >
0, a = 0, T diag = log{16pγ log2(4p)} and T off = ψ

(
T̃ off) with T̃ off = 2 log{16pγ log2(2p)}

)
,

satisfies

Ēwc
θ (N) ≤ C

{√
p log(epγ)

ϑ2
∨ s log(epγ) log(ep)

β2
∨ 1

}
. (2.7)

Furthermore, there exists β0(s) > 0, depending only on s, such that for all β ≤ β0(s), the
output N satisfies

Ēθ(N) ≤ C
{√

p log(epγ)

ϑ2
∨
√
s log(ep/β) log(ep)

β2
∨ 1

}
, (2.8)

for s ≥ 2, and

Ēθ(N) ≤ C
{
log(epγ) log(ep)

βϑ
∨ 1

}
, (2.9)

for s = 1.

We defer detailed discussion of our response delay bounds until after we have presented
our adaptive procedure in Section 2.3.3.

2.3.2 Sparse case

We now assume that p ≥ 2, and analyse the performance of N = N
(√

8 log(p− 1)
)
; in other

words, we choose a =
√
8 log(p− 1). This choice turns out to work particularly well when

the vector of mean change is sparse in the sense that s(θ) ≤ √p, though again we do not
assume this in our theory. The motivation for this choice of a comes from the fact that, for
fixed b and j, we have Λj

′,j
b

∣∣ τ jb iid∼ N (0, τ jb ) for j′ ∈ [p] \ {j} under the null. Since a is the

threshold level for
∣∣Λj′,jb

∣∣/√τ jb , it is therefore natural to choose a to be of the same order as
the maximum absolute value of p− 1 independent and identically distributed N (0, 1) random
variables. The declaration threshold T off is determined based on Lemma 2.20. Theorem 2.3
below shows that, in the sparse case, the patience of our procedure is also guaranteed to be
at least at the nominal level γ > 0. In addition, as in the dense case, we can also control the
response delay of ocd′ according to Theorem 2.4.

Theorem 2.3. Let X1, X2, . . . be generated according to P0. For any γ ≥ 1, let (Xt)t∈N,
β > 0, a =

√
8 log(p− 1), T diag = log{16pγ log2(4p)} and T off = 8 log{16pγ log2(2p)} be the

inputs of Algorithm 2.2, with corresponding output N . Then E0(N) ≥ γ.



2.3 Theoretical analysis 33

Theorem 2.4. Assume that X1, X2, . . . are generated according to Pz,θ for some z and θ such
that ∥θ∥2 = ϑ ≥ β > 0 and that θ has an effective sparsity of s := s(θ). Then there exists a
universal constant C > 0, such that the output N from Algorithm 2.2, with inputs (Xt)t∈N,
β > 0, a =

√
8 log(p− 1), T diag = log{16pγ log2(4p)} and T off = 8 log{16pγ log2(2p)},

satisfies

Ēθ(N) ≤ Ēwc
θ (N) ≤ C

{
s log(epγ) log(ep)

β2
∨ 1

}
. (2.10)

Comparing Theorems 2.2 and 2.4, we see that the thresholding induced by the non-zero
choice of a =

√
8 log(p− 1) in Theorem 2.4 facilitates an improved dependence on the effective

sparsity s in the bound on the response delay, whenever s is of smaller order than √p.

2.3.3 Adaptive procedure

To adapt to different sparsity levels s, we can run ocd (or ocd′) with two values of a
simultaneously: we choose a = adense = 0 to form the off-diagonal dense statistic Soff,d =

Soff(adense), and a = asparse =
√
8 log(p− 1) to form the off-diagonal sparse statistic Soff,s =

Soff(asparse). We recall that the diagonal statistic Sdiag does not depend on the choice of
a. For clarity, we redefine the three stopping times here: Ndiag := inf{n : Sdiag

n ≥ T diag},
Noff,d := inf{n : Soff,d

n ≥ T off,d} and Noff,s := inf{n : Soff,s
n ≥ T off,s}, for appropriately-

chosen thresholds T diag, T off,d and T off,s. The output of this adaptive procedure is thus
N = Ndiag ∧Noff,d ∧Noff,s.

The following results provide patience and response delay guarantees for this adaptive
procedure.

Theorem 2.5. Let X1, X2, . . . be generated according to P0. For any γ ≥ 1, let (Xt)t∈N,
β > 0, T diag = log{24pγ log2(4p)}, T off,d = ψ

(
T̃ off,d

)
with T̃ off,d = 2 log{24pγ log2(2p)} and

T off,s = 8 log{24pγ log2(2p)} be the inputs of the adaptive version of Algorithm 2.2, with
corresponding output N . Then E0(N) ≥ γ.

Theorem 2.6. Assume that X1, X2, . . . are generated according to Pz,θ for some z and θ

such that ∥θ∥2 = ϑ ≥ β > 0 and that θ has an effective sparsity of s := s(θ). Then there
exists a universal constant C > 0, such that the output N from the adaptive version of
Algorithm 2.2, with inputs (Xt)t∈N, β > 0, T diag = log{24pγ log2(4p)}, T off,d = ψ

(
T̃ off,d

)
with T̃ off,d = 2 log{24pγ log2(2p)} and T off,s = 8 log{24pγ log2(2p)}, satisfies

Ēwc
θ (N) ≤ C

{
s log(epγ) log(ep)

β2
∨ 1

}
. (2.11)

Furthermore, there exists β0(s) ∈ (0, 1/2], depending only on s, such that for all β ≤ β0(s),
the output N satisfies

Ēθ(N) ≤ C
{(√

p log(epγ)

ϑ2
∨
√
s log(epβ−1) log(ep)

β2

)
∧ s log(epγ) log(ep)

β2

}
, (2.12)



34 A high-dimensional, multiscale online changepoint detection procedure

for s ≥ 2, and

Ēθ(N) ≤ C log(epγ) log(ep)

β2
, (2.13)

for s = 1.

Comparing these two results with the corresponding theorems in Sections 2.3.1 and 2.3.2,
we see that by choosing slightly more conservative thresholds, the adaptive procedure retains
the nominal patience control while (up to constant factors) achieving the best of both worlds
in terms of its response delay guarantees under different sparsity regimes.

To better understand the worst-case and average-case response delay bounds in Theo-
rem 2.6, it is helpful to assume that ϑ/C1 ≤ β ≤ ϑ ≤ C1 and log(γ/β) ≤ C2 log p for some
C1, C2 > 0. Under these additional assumptions, the result of Theorem 2.6 takes the simpler
form that for some C > 0, depending only on C1 and C2, we have

Ēwc
θ (N) ≤ Cs log2(ep)

ϑ2
and Ēθ(N) ≤ C(s ∧ p1/2) log2(ep)

ϑ2
.

In particular, the average-case response delay upper bound exhibits a phase transition when
the effective sparsity level s is of order √p, which is the boundary between the sparse and
dense cases. Similar sparsity-related elbow effects have been observed in the minimax rate for
high-dimensional Gaussian mean testing (Collier, Comminges and Tsybakov, 2017) and the
corresponding offline changepoint detection problem (Liu, Gao and Samworth, 2021). On the
other hand, we note that quadratic dependence on ϑ in the denominator, and the logarithmic
dependence on γ in the numerator, are known to be optimal in the case when p = 1 (Lorden,
1971, Theorem 3). The different dependencies on sparsity of the worst-case and average-case
response delays for the dense, sparse and adaptive versions of ocd′ are illustrated in Figure 2.2.

2.3.4 Relaxation of assumptions

The setting we consider for our theoretical results, with independent Gaussian observations
having identity covariance matrix, is convenient for facilitating a relatively clean presentation
and to clarify the main ideas behind the ocd procedure. Nevertheless, it is of interest to consider
more general data generating mechanisms, where these assumptions are relaxed. Focusing
on the dense case for simplicity of exposition, the Gaussianity assumption ensures that our
aggregated statistics have chi-squared distributions (under the null) or non-central chi-squared
distributions (under the alternative), so we can apply existing sharp tail bounds. If, instead,
our observations have sub-Gaussian distributions, then the corresponding statistics would
have sub-Gamma distributions, in the terminology of Boucheron, Lugosi and Massart (2013),
so Bernstein’s inequality could be applied to give alternative bounds in this setting. Another
place where we make use of the Gaussianity assumption is in comparing the trajectories of our
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Fig. 2.2 Illustration of the dependencies on sparsity of the worst-case and average-case response
delays for the dense, sparse and adaptive versions of ocd′, as given by Theorems 2.2, 2.4
and 2.6.

test statistics with a Brownian motion with drift (see, for instance, the proof of Lemma 2.16).
Since we can view these trajectories as discrete Gaussian random walks, we can establish
direct inequalities in this comparison. If we were to relax the Gaussianity, then we would
need to rely on Donsker’s invariance principle, or preferably its finite-sample version given by
the Hungarian embedding (Komlós, Major and Tusnády, 1976).

In cases where the covariance matrix of the observations were unknown, it may be possible
to estimate this using a training sample, known to come from the null hypothesis, and use
this to pre-whiten the data. The form of the estimator to be used should be chosen to exploit
any known dependence structure (e.g. banding, Toeplitz or tapering) between the different
coordinates. Similar remarks apply when there is short-range serial (temporal) dependence
between successive observations. In Section 2.4.4, we demonstrate one way of handling
temporal dependence with real data, by studying the residuals of the fit of an autoregressive
model.

2.4 Numerical studies

In this section, we study the empirical performance of the ocd algorithm and compare it
with other online changepoint detection methods. Recall that the (adaptive) ocd algorithm
declares a change when any of the three statistics Sdiag, Soff,d and Soff,s exceeds their respective
thresholds T diag, T off,d and T off,s. If a priori knowledge about the signal sparsity is available,
it may be slightly preferable to use Ndiag ∧ Noff,d in the dense case, and Ndiag ∧ Noff,s in
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the sparse case, but for simplicity of exposition, we will focus on the adaptive version of
our ocd procedure throughout the remainder of this section. While the threshold choices
given in Theorem 2.5 guarantee that the patience of (adaptive) ocd will be at least at the
nominal level, in practice, they may be conservative. We therefore describe a scheme for
practical choice of thresholds in Section 2.4.1. Recall that, in order to form Soff,d and Soff,s,

two different entrywise hard thresholds for Aj
′,j
b /

√
tjb ∨ 1 need to be specified. For Soff,d, we

choose a = 0 for both theoretical analysis and practical usage. For Soff,s, the theoretical choice
is a =

√
8 log(p− 1), but since this is also slightly conservative, the choice of a =

√
2 log p is

used in our practical implementation of the algorithm, and our numerical simulations below.

2.4.1 Practical choice of declaration thresholds

The purpose of this section is to introduce an alternative to using the theoretical thresholds
T diag, T off,d and T off,s provided by Theorem 2.5, namely to determine the thresholds through
Monte Carlo simulation. The basic idea is that since the null distribution is known, we can
simulate from it to determine the patience for any given choice of thresholds. A complicating
issue is the fact that the choices of the three thresholds T diag, T off,d and T off,s are related, so
that we may be able to achieve the same patience by increasing T diag and decreasing T off,d,
for example. To handle this, we first argue that the renewal nature of the processes involved
means that, at least for moderately large thresholds, the times to exceedence for each of the
three statistics Sdiag, Soff,d and Soff,s are approximately exponentially distributed. Evidence
to support this is provided by Figure 2.3, where we present QQ-plots of Ndiag/m(Ndiag),
Noff,d/m(Noff,d) and Noff,s/m(Noff,s), where the m(N) statistics are empirical medians of
the corresponding N statistics (divided by log 2) over 200 repetitions.

We can therefore set an individual Monte Carlo threshold for Sdiag as follows (the other two
statistics can be handled in identical fashion): for r ∈ [B], simulate X(r)

1 , . . . , X
(r)
γ

iid∼ Np(0, Ip)
and for each n ∈ [γ], compute the diagonal statistic Sdiag,(r)

n on the rth sample. Now compute
V (r) := max1≤n≤γ S

diag,(r)
n , and take T̃ diag to be the (1/e)th quantile of {V (r) : r ∈ [B]}. The

rationale for the final step here is that if P0(V
(1) < T̃ diag) = 1/e, then P0(Ñ

diag > γ) = 1/e,
where Ñdiag := min{n : Sdiag

n ≥ T̃ diag}. Thus, under an exponential distribution for Ñdiag,
we have that Ñdiag has individual patience γ.

Having determined appropriate thresholds T̃ diag, T̃ off,d and T̃ off,s, we can then use similar
ideas to set a suitable combined threshold T comb. In particular, we also argue that Ndiag ∧
Noff,d ∧ Noff,s has an approximate exponential distribution; see Figure 2.3 for supporting
evidence. We therefore proceed as follows: for r ∈ [B], simulate X̃(r)

1 , . . . , X̃
(r)
γ

iid∼ Np(0, Ip)
and use this new data to compute S̃diag,(r)

n := S
diag,(r)
n /T̃ diag, S̃off,d,(r)

n := S
off,d,(r)
n /T̃ off,d

and S̃
off,s,(r)
n := S

off,s,(r)
n /T̃ off,s for each n ∈ [γ], and set W (r) := max

{
S̃
diag,(r)
n ∨ S̃off,d,(r)

n ∨
S̃
off,s,(r)
n : n ∈ [γ]

}
on the rth sample. Now take T comb to be the (1/e)th quantile of

{W (r) : r ∈ [B]}. Similar to before, our reasoning here is that if P0(W
(1) < T comb) = 1/e,
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then Ndiag := min
{
n : Sdiag

n ≥ T̃ diagT comb
}
, Noff,d := min

{
n : Soff,d

n ≥ T̃ off,dT comb
}

and
Noff,s := min

{
n : Soff,s

n ≥ T̃ off,sT comb
}

satisfy

P0

(
Ndiag ∧Noff,d ∧Noff,s > γ

)
= 1/e.

Thus, under an exponential distribution for Ndiag ∧Noff,d ∧Noff,s, it again has the desired
nominal patience. Our practical thresholds, therefore, are T diag = T̃ diagT comb, T off,d =

T̃ off,dT comb and T off,s = T̃ off,sT comb for Sdiag, Soff,d and Soff,s respectively. Table 2.1 confirms
that, with these choices of Monte Carlo thresholds, the patience of the adaptive ocd algorithm
remains at approximately the desired nominal level.
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Fig. 2.3 QQ-plots of standardised versions of Ndiag, Noff,d and Noff,s, as well as N =
Ndiag ∧Noff,d ∧Noff,s, against theoretical Exp(1) quantiles.

Table 2.1 Estimated run lengths under the null using the Monte Carlo thresholds described
in Section 2.4.1 over 500 repetitions, with desired patience level γ = 5000. Algorithm is
terminated after 20000 data points for each repetition. Each reported value is the average
run length taken over the repetitions which have already declared prior to time 20000. For
reference, E(X | X < 20000) ≈ 4626.9 when X ∼ Exp(1/5000).

p = 100 p = 1000

β = 2 4606.2 4480.8
β = 1/2 5291.5 4383.6
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Table 2.2 Estimated response delays over 200 repetitions for Ndiag, Noff,d and Noff,s and the
response delay of the combined declaration time N for ocd, with the percentages of repetitions
on which each statistics triggers the declaration first (or equal first) shown in parentheses.
The quickest response in each setting is given in bold. Other parameters: p = 100, γ = 5000,
z = 0 and θ = ϑU , where the distribution of U is described in Section 2.4.2.

β = ϑ

s ϑ Ndiag Noff,d Noff,s N

1 2 11.5 (83.5) 19.4 (1.5) 13.0 (35) 11.2
1 1 40.6 (79.5) 74.4 (1.5) 47.4 (19) 39.1
1 0.5 136.3 (82) 305.2 (1) 169.2 (17) 129.7
1 0.25 455.4 (83) 1124.5 (1) 635.0 (16) 433.6
10 2 20.1 (9.5) 19.2 (9.5) 14.7 (88) 14.3
10 1 69.7 (15.5) 72.6 (12) 52.4 (73.5) 50.4
10 0.5 240.4 (29.5) 308.0 (3) 207.7 (68) 197.1
10 0.25 723.3 (56.5) 1124.3 (6) 760.7 (37.5) 648.4
100 2 53.3 (0.5) 19.7 (92) 27.4 (10) 19.5
100 1 169.9 (2) 75.2 (85) 94.9 (14.5) 73.1
100 0.5 544.1 (9) 300.6 (75.5) 345.1 (15.5) 278.9
100 0.25 1493.6 (28.5) 1206.0 (51.5) 1420.2 (20) 1065.4

Table 2.3 Estimated response delays over 200 repetitions for Ndiag, Noff,d and Noff,s and the
response delay of the combined declaration time N for ocd. Settings where β is both over-
and under-specified are given. The quickest response in each setting is given in bold. Other
parameters: p = 100, γ = 5000, z = 0 and θ = ϑU , where the distribution of U is described
in Section 2.4.2.

β = 4ϑ β = ϑ/4

s ϑ Ndiag Noff,d Noff,s N Ndiag Noff,d Noff,s N

1 2 7.7 19.5 12.8 7.6 30.3 19.5 12.6 12.6
1 1 27.8 77.7 48.3 27.6 98.3 73.7 45.2 45.1
1 0.5 92.9 288.9 162.0 92.3 304.8 304.9 171.8 171.1
1 0.25 351.7 1148.7 657.2 342.8 746.7 1158.1 614.0 586.7
10 2 16.7 19.0 14.9 13.7 50.0 20.4 15.1 15.0
10 1 57.6 72.9 51.2 46.5 161.9 76.5 54.7 54.5
10 0.5 228.3 286.4 201.0 180.5 509.0 314.7 203.6 201.8
10 0.25 739.3 1175.1 787.9 645.1 1208.2 1189.6 725.1 715.9
100 2 59.2 18.9 25.3 18.7 110.8 21.2 27.2 20.5
100 1 213.9 73.0 92.4 71.0 347.4 76.8 95.5 74.2
100 0.5 696.5 307.0 385.0 284.8 1029.0 310.2 352.5 289.3
100 0.25 1811.5 1218.1 1327.4 967.1 2149.9 1091.9 1175.9 957.8
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2.4.2 Numerical performance of ocd

In this section, we study the empirical performance of ocd. As shown in Figure 2.1, under
the alternative, all three statistics Sdiag, Soff,d and Soff,s in ocd can be the first to trigger
a declaration that a mean change has occurred. We thus examine different settings under
which each of these three statistics can respectively be the quickest to react to a change.
Our simulations were run for p = 100, s ∈ {1, ⌊p1/2⌋, p}, z ∈ {0, 1000}, γ = 5000, ϑ ∈
{2, 1, 0.5, 0.25}, β ∈ {ϑ, 4ϑ, ϑ/4}. In all cases, θ was generated as ϑU , where U is uniformly
distributed on the union of all s-sparse unit spheres in Rp. By this, we mean that we first
generate a uniformly random subset S of [p] of cardinality s, then set U := Z/∥Z∥2, where
Z = (Z1, . . . , Zp)⊤ has independent components satisfying Zj ∼ N (0, 1)1{j∈S}. Instead of
terminating the ocd procedure once one of the three statistics declares a change (as we would
in practice), we run the procedure until all three statistics have exceeded their respective
thresholds. Tables 2.2 and 2.3 summarise the performance of the three statistics for z = 0.
Simulation results for z = 1000 were similar, and are therefore not included here.

We first discuss the case when β is correctly specified (Table 2.2). When the sparsity
s is small or moderate and ϑ is small, the diagonal statistic Sdiag is likely to be the first
to declare a change. The response delay of Sdiag increases with s, which means that the
off-diagonal sparse statistic Soff,s typically reacts quickest to a change when the s is moderate
to large and ϑ is not too small. On the other hand, the stopping time Noff,d, which is driven
by the off-diagonal dense statistic, is not significantly affected by s (in agreement with our
average-case bound in Theorem 2.2), and is usually the dominant statistic when the signal
is dense. A further observation is that the three individual response delays, as well as the
combined response delay, are all approximately proportional to ϑ−2, a phenomenon which is
supported by Theorem 2.6.

Table 2.3 presents corresponding results when β is both over- and under-specified. We note
that both Noff,d and Noff,s are almost unaffected by either type of misspecification. For Ndiag,
a mild over-misspecification of β helps it to react faster, while an under-misspecification causes
it to have increased response delay. However, since we can also observe that Ndiag rarely
declares first by a large margin, the performance of ocd is highly robust to misspecification
of β, especially when s is not too small.

2.4.3 Comparison with other methods

We now compare our adaptive ocd algorithm with other online changepoint detection algo-
rithms proposed in the literature, namely those of Mei (2010), Xie and Siegmund (2013) and
Chan (2017). Since we were unable to find publicly-available implementations of any of these
algorithms, we briefly describe below their methodology and the small adaptations that we
made in order to allow them to be used in our settings.
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Recall from Section 1.2.5 that Mei (2010) assumes knowledge of θ, and, on observing each
new data point, aggregates likelihood ratio tests in each coordinate of the null N (0, 1) against
an alternative of N (θj , 1) in the jth coordinate. In our setting where we do not know θ and
only assume that ∥θ∥2 ≥ β, we replace the original statistics

∑
j∈[p]R

j
n,θj

and maxj∈[p]R
j
n,θj

with

max

{ p∑
j=1

Rjn,β/√p,

p∑
j=1

Rjn,−β/√p

}
and max

{
max
j∈[p]

Rjn,β/√p,max
j∈[p]

Rjn,−β/√p

}

respectively.
We now recall the algorithms of Xie and Siegmund (2013) and Chan (2017) from Chapter 1.

Let B1, . . . , Bp iid∼ Bernoulli(p0) for some known p0 ∈ [0, 1]. Both methods consider testing
(applied to tail sequences for the purpose of changepoint detection) the null (Xi)i∈N where
Xi

iid∼ Np(0, Ip) against an alternative of a mixture distribution, where for each coordinate
j ∈ [p], independently, (Xj

i )i∈N satisfies

Xj
i | B

j iid∼ N
(
µj1{Bj=1}, 1

)
for some unknown µj ∈ R. Specifically, writing Zjn,r := r−1/2

∑n
i=n−r+1X

j
i for n ∈ N, r ∈ [n]

and j ∈ [p], and with a pre-specified window size w, the test statistics are of the form

S+
XS,C(p0, λ, κ, w) := max

r∈[w∧n]

p∑
j=1

log

(
1− p0 + λp0e

(Zj
n,r∨0)2/κ

)
,

where Xie and Siegmund (2013) take (λ, κ, w) = (1, 2, 200) and Chan (2017) takes (λ, κ, w) =

(2
√
2− 2, 4, 200). Since such a test statistic is only effective when

∑
j∈[p](µ

j ∨ 0)2 is large, we
considered statistics of the form S+

XS,C(p0, λ, κ, w)∨S
−
XS,C(p0, λ, κ, w), where S−

XS,C(p0, λ, κ, w)

replaces the exponent Zjn,r ∨ 0 with Zjn,r ∧ 0. An adaptive choice of p0 is not provided by
the authors, but the choices p0 ∈ {0.1, 1/

√
p, 1} have been considered; we found the choice

p0 = 1/
√
p to be the most competitive overall, as seen in Table 2.4.

For each of the Mei (2010), Xie and Siegmund (2013) and Chan (2017) algorithms, we
determined appropriate thresholds using Monte Carlo simulation, as suggested by the authors,
and in a similar fashion to the way in which we set the ocd thresholds as described in
Section 2.4.1. This guarantees that the algorithms have approximately the nominal patience,
and so allows us to compare the methods by means of the response delay.

Table 2.5 displays the response delays for the ocd algorithm, as well as the alternative
methods described above, for p ∈ {100, 2000}, s ∈ {5, ⌊√p⌋, p} and ϑ ∈ {2, 1, 0.5, 0.25}. In
fact, we also ran simulations for p = 1000, s ∈ {1, p/2} and ϑ = 0.125, but the results are
qualitatively similar and are therefore omitted. Overall, the results reveal that ocd performs
very well in comparison with existing methods, across a wide range of scenarios; in several
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Table 2.4 Estimated response delay for the algorithms of Xie and Siegmund (2013) (XS) and
Chan (2017) (Chan) over 200 repetitions, with z = 0, γ = 5000, w = 200, p0 ∈ {0.1, 1/

√
p, 1}

and θ generated as described in Section 2.4.2. The smallest response delays are given in bold.

XS Chan
p s ϑ p0 = 0.1 p0 = 1/

√
p p0 = 1 p0 = 0.1 p0 = 1/

√
p p0 = 1

100 5 2 13.1 13.1 18.4 11.9 11.9 18.4
100 5 1 47.3 47.3 75.1 42.0 42.0 75.1
100 5 0.5 194.3 194.3 413.6 163.7 163.7 411.9
100 10 2 15.2 15.2 19.9 14.5 14.5 19.8
100 10 1 52.9 52.9 72.1 51.5 51.5 72.0
100 10 0.5 255.8 255.8 513.1 245.6 245.6 508.7
100 100 2 23.6 23.6 22.9 27.5 27.5 22.9
100 100 1 102.1 102.1 84.1 89.6 89.6 84.1
100 100 0.5 526.8 526.8 657.9 756.0 756.0 647.5

1000 5 2 23.0 17.9 49.0 17.2 13.6 52.3
1000 5 1 88.5 67.9 224.3 62.9 52.4 281.0
1000 5 0.5 781.5 419.4 2814.9 411.1 236.5 5627.1
1000 31 2 35.1 31.3 57.6 30.6 29.8 61.6
1000 31 1 133.5 113.6 297.8 113.3 106.9 364.7
1000 31 0.5 2129.1 1692.7 2678.6 1842.9 1377.9 5685.2
1000 1000 2 63.2 73.4 59.2 66.1 89.1 65.0
1000 1000 1 325.4 459.3 296.4 355.4 720.4 418.8
1000 1000 0.5 2968.4 3698.9 3355.8 3090.8 3846.6 6439.8

2000 5 2 30.2 20.8 65.0 20.7 15.6 67.6
2000 5 1 113.9 79.5 447.2 78.6 59.5 586.4
2000 5 0.5 1380.2 607.7 4333.9 570.2 285.0 6040.2
2000 44 2 45.0 40.2 75.3 38.8 37.7 79.1
2000 44 1 191.8 149.1 625.7 154.6 145.0 830.3
2000 44 0.5 3115.4 2945.4 4046.7 2634.1 2751.4 6066.1
2000 2000 2 89.3 103.2 83.9 93.2 136.7 88.2
2000 2000 1 722.4 1020.0 746.9 765.9 2074.7 967.0
2000 2000 0.5 3326.7 4669.3 4007.2 3139.9 4672.7 6197.0
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cases it is by far the most responsive procedure, and in none of the settings considered is it
outperformed by much. The Xie and Siegmund (2013) and Chan (2017) algorithms perform
similarly to each other, and in most settings are both more competitive than the Mei (2010)
method described above. We note that the performance of the Xie and Siegmund (2013) and
Chan (2017) algorithms is relatively better when the signal-to-noise ratio ϑ is high; in these
scenarios, the default window size w = 200 is large enough that sufficient evidence against
the null can typically be accumulated within the moving window. For lower signal-to-noise
ratios, this ceases to be the case, and from time z + w onwards, the test statistic has the
same marginal distribution (with no positive drift). This explains the relative deterioration
in performance for those algorithms in the harder settings considered. As mentioned in the
introduction, if the change in mean were known to be small, then the window size could be
increased to compensate, but at additional computational expense; a further advantage of
ocd, then, is that the computational time only depends on p (and not on β or other problem
parameters). We remark that, in terms of the running time and CPU cost per new observation
of the algorithm, the Mei (2010) algorithm is the fastest due to the simple nature of its
aggregation technique. As discussed above, the computational time of the Xie and Siegmund
(2013) and Chan (2017) algorithms depends on the choice of w, and is slower than that of
the Mei (2010) algorithm when a large enough w is chosen such that the detection delays are
relatively small. The computational time of our ocd algorithm can be slightly longer when
the dimension p is quite large, but nonetheless the algorithm is able to process thousands of
observations within a few seconds when p = 1000.

2.4.4 Real data example

We consider a seismic signal detection problem, using a dataset from the High Resolution
Seismic Network, operated by the Berkeley Seismological Laboratory. Ground motion sensor
measurements were recorded using geophones at a frequency of 250 Hz in three mutually
perpendicular directions, at 13 stations near Parkfield, California for a total of 740 seconds
from 2am on 23 December 2004. This dataset was also studied by Xie, Xie and Moustakides
(2019), and was obtained from http://service.ncedc.org/fdsnws/dataselect/1/. To begin, we
removed the linear trend in each coordinate and applied a 2–16 Hz bandpass filter to the
data using the GISMO toolbox1; these are standard pre-processing steps in the seismology
literature (e.g. Caudron et al., 2018; Xie, Xie and Moustakides, 2019). In order to reduce
the effects of temporal dependence, we computed a root mean square amplitude envelope,
downsampled to 16 Hz, and then extracted the residuals from the fit of an autoregressive
model of order 1. The processed data are available as a built-in dataset in the ocd R package.
The first four minutes of the series were used to estimate the baseline mean and variance for
each sensor, and we plot the standardised data from 2:04am onwards in Figure 2.4. When

1Available at: http://geoscience-community-codes.github.io/GISMO/

http://service.ncedc.org/fdsnws/dataselect/1/
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Table 2.5 Estimated response delay for ocd, as well as the algorithms of Mei (2010) (Mei), Xie
and Siegmund (2013) (XS) and Chan (2017) (Chan) over 200 repetitions, with z = 0, γ = 5000
and θ generated as described in Section 2.4.2. The smallest response delay is given in bold.

p s ϑ ocd Mei XS Chan
100 5 2 13.7 36.3 13.1 11.9
100 5 1 46.9 125.9 47.3 42.0
100 5 0.5 174.8 383.1 194.3 163.7
100 5 0.25 583.5 970.4 2147 1888.8
100 10 2 14.9 44.1 15.2 14.5
100 10 1 53.8 150.1 52.9 51.5
100 10 0.5 194.4 458.2 255.8 245.6
100 10 0.25 629.7 1171.3 2730.7 2484.9
100 100 2 19.4 72.7 23.6 27.5
100 100 1 74.4 268.3 89.6 102.1
100 100 0.5 287.9 834.9 526.8 756.0
100 100 0.25 1005.8 1912.9 3598.3 3406.6

2000 5 2 19.0 130.5 20.8 15.6
2000 5 1 67.3 316.7 79.5 59.5
2000 5 0.5 247.3 680.2 607.7 285.0
2000 5 0.25 851.3 1384.8 4459.2 3856.9
2000 44 2 37.5 247.7 40.2 37.7
2000 44 1 136.0 596.1 149.1 145.0
2000 44 0.5 479.1 1270.8 2945.5 2751.4
2000 44 0.25 1584.2 2428.8 4457.8 5049.7
2000 2000 2 97.1 949.9 103.2 136.7
2000 2000 1 360.7 2126.5 1020.0 2074.7
2000 2000 0.5 1296.0 3428.1 4669.3 4672.7
2000 2000 0.25 3436.7 4140.4 5063.7 5233.5
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applying our ocd algorithm to this data, we specified the patience level to be γ = 1.35× 106,
corresponding to a patience of one day, and β = 150. The ocd algorithm declared a change at
02:10:03.84, and was triggered by Soff,d. According to the Northern California Earthquake
Catalog2, an earthquake of magnitude 1.47 Md hit near Atascadero, California (50 km away
from Parkfield) at 02:09:54.01, so the delay was 9.8 seconds. It is known3 that P waves, which
are the primary preliminary wave and arrive first after an earthquake, travel at up to 6 km/s
in the Earth’s crust, which is consistent with this delay.
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Fig. 2.4 Standardised, pre-processed earthquake data from 39 sensors. The time of the 1.47
Md earthquake is given by the vertical red dashed line, while time of ocd declaration of change
is given as a blue dashed line.

2.5 Proofs of main results

2.5.1 Proofs from Section 2.3.1

Proof of Theorem 2.1. Define m := ⌊2γ⌋. It suffices to prove that (a) P0(N
off ≤ m) ≤ 1/4

and (b) P0(N
diag ≤ m) ≤ 1/4, since then we have

E0(N) = E0(N
off ∧Ndiag) ≥ 2γP0(N

off ∧Ndiag > 2γ)

≥ 2γ
{
1− P0(N

off ≤ m)− P0(N
diag ≤ m)

}
≥ γ.

2Available at: http://www.ncedc.org/ncedc/catalog-search.html.
3One source for this information is https://www.usgs.gov/natural-hazards/earthquake-hazards/

science/seismographs-keeping-track-earthquakes.

http://www.ncedc.org/ncedc/catalog-search.html.
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/seismographs-keeping-track-earthquakes.
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/seismographs-keeping-track-earthquakes.
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We prove the two claims below.
(a) By (2.6) and a union bound, we have

P0(N
off ≤ m) ≤

∑
n∈[m],j∈[p]

b∈B

P0

(
Qjn,b ≥ T

off
)
=

∑
n∈[m],j∈[p]

b∈B

E0

[
P0

(
Qjn,b ≥ T

off
∣∣∣ τ jn,b)]. (2.14)

Recall that under the null, Λk,jb | τ
j
b

iid∼ N (0, τ jb ) for all b ∈ B, j ∈ [p] and k ∈ [p]\{j}, which
implies that Qjb | τ

j
b ∼ χ

2
p−11{τ jb>0}. Thus, we have by Laurent and Massart (2000, Lemma 1)

that for all n ∈ [m], j ∈ [p] and b ∈ B,

P0

(
Qjn,b ≥ T

off
∣∣∣ τ jn,b) ≤ e−T̃ off/2. (2.15)

Combining (2.14) and (2.15), we have

P0(N
off ≤ m) ≤ |B|mpe−T̃ off/2 ≤ 1/4. (2.16)

(b) For j ∈ [p] and b ∈ B ∪ B0, denote N j
b := inf{n : Rjn,b ≥ T

diag}, where Rjn,b is defined
by (2.2). By Lemma 2.10, we have that Rjn,b = {R

j
n−1,b + b(Xj

n − b/2)} ∨ 0, and that this
process is always non-negative. Then Ndiag = min

{
N j
b : j ∈ [p], b ∈ B ∪ B0

}
.

Now, fix some j ∈ [p] and b ∈ B ∪ B0. Define U0 := 0 and Uh := inf{n > Uh−1 : Rjn,b /∈
(0, T diag)} for h ∈ N, and let H := inf{h : RjUh,b

≥ T diag}. Then

N j
b = UH ≥ H.

To study the distribution of H, consider the one-sided sequential probability ratio test of
H0,Z : Z1, Z2, . . .

iid∼ N (0, 1) against H1,Z : Z1, Z2, . . .
iid∼ N (b, 1) with log-boundaries T diag

and −∞. The associated stopping time for this test is

Nos := inf

{
n ∈ N : b

n∑
t=1

(Zt − b/2) ≥ T diag

}
.

Since (Rjn,b)n is a Markov process that renews itself every time it hits 0, H follows a geometric
distribution with success probability

P0(R
j
U1,b
≥ T diag) ≤ PH0,Z

(Nos <∞) ≤ e−Tdiag
,

where the last inequality follows from Lemma 2.12. Consequently,

P0(N
j
b ≤ m) ≤ P0(H ≤ m) ≤ 1−

(
1− e−Tdiag

)m
.
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As the above inequality holds for all j ∈ [p] and b ∈ B ∪ B0, we have that

P0(N
diag > m) = P0

( ⋂
j∈[p],b∈B∪B0

{N j
b > m}

)
=
∏
j∈[p]

{
1− P0

( ⋃
b∈B∪B0

{N j
b ≤ m}

)}
≥
[
1− |B ∪ B0|

{
1−

(
1− e−Tdiag)m}]p ≥ 1−mp|B ∪ B0|e−T

diag ≥ 3/4,

(2.17)

as desired, where in the penultimate inequality, we twice used the fact that (1− x)α ≥ 1−αx
for all α ≥ 1 and x ∈ [0, 1].

The proof of Theorem 2.2 is quite involved. We first define some relevant quantities,
and then state and prove some preliminary results. For θ ∈ Rp with effective sparsity
s(θ), there is at most one coordinate in θ of magnitude larger than ϑ/

√
2, so there exists

b∗ ∈
{
β/
√
s(θ) log2(2p),−β/

√
s(θ) log2(2p)

}
⊆ B such that

J :=
{
j ∈ [p] : θj/b∗ ≥ 1 and |θj | ≤ ϑ/

√
2
}

(2.18)

has cardinality at least s(θ)/2 (note that the condition θj/b∗ ≥ 1 above ensures that {θj : j ∈
J } all have the same sign as b∗). Both b∗ and J can be chosen as functions of θ. Now, given
any sequence X1, X2, . . . ∈ Rp and θ ∈ Rp, define for any α ∈ (0, 1] the function

q(α) = q(α;X1, . . . , Xz, θ) := inf
{
y ∈ R :

∣∣{j ∈ J : tjz,b∗ ≤ y}
∣∣ ≥ α|J |}, (2.19)

where tjz,b∗ is obtained by running Algorithm 2.2 up to time z with a = 0 and T diag = T off =∞.
In other words, q(α) is the empirical α-quantile of the tail lengths (tjz,b∗ : j ∈ J ) when we
run the algorithm without declaring any change up to time z. Recall the definition of the
function ψ in (2.6).

Proposition 2.7. Assume that X1, X2, . . . are generated according to Pz,θ for some z and θ
such that ∥θ∥2 = ϑ ≥ β > 0 and that θ has an effective sparsity of s := s(θ) ≥ 2. Then the
output N from Algorithm 2.2, with input (Xt)t∈N, β ∈ Rp, a = 0, T diag ≥ 1 and T off = ψ(T̃ off)

for T̃ off ≥ log(ep), satisfies

Ez,θ
{
(N − z) ∨ 0

∣∣ X1, . . . , Xz

}
≤

396T̃ off + 65

√
pT̃ off

ϑ2
+

24 log2(2p)

αβ2
+ 3q(α) + 2, (2.20)

for any α ∈ (0, 1].

Proof. Since the bound in (2.20) is positive, we may, throughout the proof and for arbitrary
z ∈ N, restrict attention to realisations X1 = x1, . . . , Xz = xz for which we have not declared
a change by time z. In other words, we have N > z. This restriction also ensures that q(α)
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defined in (2.19) is now indeed the empirical α-quantile of the tail lengths (tjz,b∗ : j ∈ J ) at
the changepoint. Denote Jα :=

{
j ∈ J : tjz,b∗ ≤ q(α)

}
. Then we have |Jα| ≥ α|J | ≥ αs/2.

We now fix some

r ≥

{
12
(
T̃ off +

√
2(p− 1)T̃ off

)
ϑ2

∨ 3q(α)

}
+ 2 =: r0. (2.21)

Note that r0 > 3q(α) ≥ 3tjz,b∗ for all j ∈ Jα . For j ∈ Jα, we define the event

Ωjr :=
{
tjz+⌊r⌋,b∗ > 2⌊r⌋/3

}
.

Under Pz,θ, conditional on X1 = x1, . . . , Xz = xz, we know that Xz+1, Xz+2, . . .
iid∼ Np(θ, Ip).

Hence, by using Lemma 2.11 and applying Lemma 2.16(b) to tjz+⌊r⌋,b∗ ∧ ⌊r⌋ for j ∈ Jα, we
obtain

Pz,θ
( ⋂
j∈Jα

(Ωjr)
c
∣∣∣ X1 = x1, . . . , Xz = xz

)
≤ exp

{
−|Jα|b2∗⌊r⌋/12

}
≤ exp{−αsb2∗⌊r⌋/24}.

(2.22)

We now work on the event Ωjr, for some j ∈ Jα. We note that (2.21) guarantees that
r ≥ 2, and thus tjz+⌊r⌋,b∗ ≥

⌈
2⌊r⌋/3

⌉
≥ 2. Then, by Lemma 2.19 and the fact that r0 > 3tjz,b∗ ,

we have that

⌊r⌋
3

<
tjz+⌊r⌋,b∗

2
≤ τ jz+⌊r⌋,b∗ ≤

3tjz+⌊r⌋,b∗
4

≤
3
(
tjz,b∗ + r

)
4

< r.

Hence we conclude that on the event Ωjr,

2/3 ≤ ⌊r⌋/3 < τ jz+⌊r⌋,b∗ ≤ ⌊r⌋. (2.23)

Recall that Λ·,j
z+⌊r⌋,b∗ ∈ Rp records the tail CUSUM statistics with tail length τ jz+⌊r⌋,b∗ . We

observe by (2.23) that on Ωjr, only post-change observations are included in Λ·,j
z+⌊r⌋,b∗ . Hence

we have that on the event Ωjr,

Λk,jz+⌊r⌋,b∗

∣∣ {τ jz+⌊r⌋,b∗ , X1 = x1, . . . , Xz = xz
} ind∼ N

(
θkτ jz+⌊r⌋,b∗ , τ

j
z+⌊r⌋,b∗

)
(2.24)

for k ∈ [p]\{j}. Therefore, on the event Ωjr and conditional on τ jz+⌊r⌋,b∗ , X1 = x1, . . . , Xz = xz,

the random variable ∥Λ−j,j
b ∥22

τ j
z+⌊r⌋,b∗

∨1
=

∥Λ−j,j
b ∥22

τ j
z+⌊r⌋,b∗

follows a non-central chi-squared distribution with

p− 1 degrees of freedom and noncentrality parameter ∥θ−j∥22τ
j
z+⌊r⌋,b∗ . Since j ∈ J and s ≥ 2,
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we observe, by (2.18) and (2.23) that ∥θ−j∥22τ
j
z+⌊r⌋,b∗ ≥ ϑ

2⌊r⌋/6 on Ωjr. Write

Ejr :=

{∥Λ−j,j
z+⌊r⌋,b∗∥

2
2

τ jz+⌊r⌋,b∗ ∨ 1
< T off

}
.

Then by Birgé (2001, Lemma 8.1), we have

Pz,θ
(
Ejr ∩ Ωjr

∣∣ τ jz+⌊r⌋,b∗ ,X1 = x1, . . . , Xz = xz

)
≤ exp

{
−

(
ϑ2⌊r⌋/6− T̃ off −

√
2(p− 1)T̃ off

)2
4
(
p− 1 + ϑ2⌊r⌋/3

) }
. (2.25)

Combining (2.22) and (2.25), we deduce that

Pz,θ
(
N > z + r

∣∣ X1 = x1, . . . , Xz = xz
)
≤ Pz,θ

(
N > z + ⌊r⌋

∣∣ X1 = x1, . . . , Xz = xz
)

≤ Pz,θ
( ⋂
j∈Jα

(Ωjr)
c

∣∣∣∣ X1 = x1, . . . , Xz = xz

)
+
∑
j∈Jα

Pz,θ
(
Ejr ∩ Ωjr

∣∣∣ X1 = x1, . . . , Xz = xz

)

≤ exp

{
−αsb

2
∗(r − 1)

24

}
+ p exp

{
−

(
ϑ2(r − 1)/6− T̃ off −

√
2(p− 1)T̃ off

)2
4
(
p− 1 + ϑ2(r − 1)/3

) }

≤ exp

{
−αsb

2
∗(r − 1)

24

}
+ p exp

{
− ϑ4(r − 1)2

576
(
p− 1 + ϑ2(r − 1)/3

)},
where the last inequality uses (2.21). Therefore, we have

Ez,θ
{
(N − z) ∨ 0 | X1 = x1, . . . , Xz = xz

}
=

∫ ∞

0
Pz,θ

(
N > z + u

∣∣ X1 = x1, . . . , Xz = xz
)
du

≤ r0 +
∫ ∞

r0−1

[
exp

{
−αsb

2
∗u

24

}
+ p exp

{
− ϑ4u2

576
(
p− 1 + ϑ2u/3

)}] ∧ 1 du

≤ r0 +
24

αsb2∗
+

∫ ∞

0

(
pe−ϑ

2u/384
)
∧ 1 du+

∫ ∞

0

(
pe

− ϑ4u2

1152(p−1)

)
∧ 1 du

≤ r0 +
24

αsb2∗
+

384 log(ep)

ϑ2
+

24
√

2(p− 1) log p

ϑ2
+

12
√

2π(p− 1)

ϑ2

≤ r0 +
24

αsb2∗
+

384 log(ep)

ϑ2
+

48
√

(p− 1) log(ep)

ϑ2
,

where the penultimate inequality follows from the fact that 1 − Φ(x) ≤ 1
2e

−x2/2 for x ≥ 0.
The desired bound (2.20) follows by substituting in the expressions for r0 and b∗.

The following two propositions control the residual tail length quantile term q(α) in (2.20)
in the worst-case and average-case scenarios respectively.
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Proposition 2.8. Let X1, X2, . . ., z, θ, s, a, p and N be defined as in Proposition 2.7. On
the event {N > z}, we have

q(1;X1, . . . , Xz, θ) ≤
8T diags log2(2p)

β2
.

Proof. We will show the stronger result that on the event {N > z}, we have

tjz,b <
8T diag

b2

for all b ∈ B and j ∈ [p]. The desired result then follows immediately by taking b = b∗ and
restricting to the subset J ⊆ [p].

Fix b ∈ B and j ∈ [p]. Recall from (2.2) and Lemma 2.10 the definition of Rjn,b and the
recursive relation Rjn,b = {R

j
n−1,b + b(Xj

n − b/2)} ∨ 0. By the update procedure for tjn,b in
Algorithm 2.2 and Lemma 2.11, we have

Rjn,b

= 0 when n = z − tjz,b,

> 0 when z − tjz,b < n ≤ z.
(2.26)

We claim that

Rjn,b/2 ≥
Rjn,b
2

+
b2(n− z + tjz,b)

8
, (2.27)

for all n ∈
{
z − tjz,b, . . . , z

}
. To see this, the claim is true when n = z − tjz,b since the right

hand side of (2.27) is 0 by (2.26). Now, assume (2.27) is true for some n = m− 1. Then,

Rjm,b/2 ≥ R
j
m−1,b/2 +

b

2

(
Xj
m −

b

4

)
≥
Rjm−1,b

2
+
b2(m− 1− z + tjz,b)

8
+
b

2

(
Xj
m −

b

4

)
=
Rjm,b
2

+
b2(m− z + tjz,b)

8
.

This proves the claim by induction. In particular, on the event {N > z}, we have T diag >

Rjz,b/2 > b2tjz,b/8 as desired.

Proposition 2.9. Let X1, X2, . . ., z, θ, s, a, p and N be defined as in Proposition 2.7. There
exists a universal constant C and β0(s) > 0, depending only on s, such that for all β < β0(s),
we have

Ez,θ
{
q(s−1/2;X1, . . . , Xz, θ)

}
≤ Cs1/2 log(16s2β−2 log2(2p)) log2(2p)

β2
.

Proof. Recall the definition of b∗ in (2.18). We may assume, without loss of generality
that b∗ = β/

√
s log2(2p) (the case b∗ = −β/

√
s log2(2p) can be proved in essentially the

same way). We first prove the result for sufficiently large s > s0. Recall that tjz,b∗ =
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argmax0≤r≤z
∑z

i=z−r+1(X
j
i − b∗/2). Define Zi := Xz−i+1 for i ∈ [z] and let Zz+1, Zz+2, . . .

iid∼
Np(0, Ip) be independent from Z1, . . . , Zz. For each j ∈ [p], let

Sjr :=

r∑
i=1

(
Zji − b∗/2

)
and S̃jr :=

r∑
i=1

Zji

for r ∈ N and define Sj0 := S̃j0 := 0. Writing ξj0 := argmax0≤r≤∆b−2
∗
Sjr , ξj := argmaxr∈N0

Sjr ,
and ξ̃j0 := argmax0≤r≤∆b−2

∗
S̃jr , where ∆ := 8 log(2s), we note that like tjz,b∗ , these three max-

ima are also uniquely attained almost surely (see the proof of Lemma 2.16). By construction,
we have for each j ∈ [p] that

tjz,b∗ = argmax
0≤r≤z

z∑
i=z−r+1

(Xj
i − b∗/2) = argmax

0≤r≤z
Sjr ≤ argmax

r∈N0

Sjr = ξj .

Writing qξ(α) := inf
{
y : |{j ∈ J : ξj ≤ y}| ≥ α|J |

}
as the empirical α-quantile of (ξj : j ∈ J ),

it follows that q(α) ≤ qξ(α) and so it suffices to control E{qξ(s−1/2)} instead of E{q(s−1/2)}.
To this end, we observe that

{
16∆s−1/2b2∗ < ξj ≤ ∆b−2

∗
}
⊆
{
16∆s−1/2b−2

∗ < ξj0 ≤ ∆b−2
∗
}

and ξ̃j0 ≥ ξ
j
0, and thus

P
(
ξj ≤ 16∆s−1/2b−2

∗
)
≥ P

(
ξj0 ≤ 16∆s−1/2b−2

∗
)
− P

(
ξj > ∆b−2

∗
)

≥ P
(
ξ̃j0 ≤ 16∆s−1/2b−2

∗
)
− P

(
ξj > ∆b−2

∗
)
. (2.28)

For the first term on the right hand side of (2.28), by Donsker’s invariance principle and the
continuity of the argmax map (see, e.g. van der Vaart and Wellner, 1996, Lemma 3.2.1 and
Theorem 3.2.2), we have in the limit β ↘ 0 that ∆b−2

∗ →∞ and so

ξ̃j0
∆b−2

∗

d→ argmax
t∈[0,1]

Bt,

where (Bt)t≥0 denotes a standard Brownian motion. In particular, we can find β0(s) > 0

depending only on s such that for β ≤ β0(s) and s > 256, we have

P
(
ξ̃j0 ≤ 16∆s−1/2b−2

∗
)
≥ 1

2
P
(
argmax
t∈[0,1]

Bt ≤ 16s−1/2
)
=

1

π
arcsin(4s−1/4) ≥ 4s−1/4

π
. (2.29)

where in the second step we used the arcsine law for Brownian motion (see, e.g. Mörters and
Peres, 2010, Theorem 5.26), and in the final step we used the fact that 4s−1/4 < 1.

For the second term on the right-hand side of (2.28), since ∆ = 8 log(2s), for sufficiently
large s ≥ s0 and sufficiently small β ≤ β0(s), we have by Lemma 2.16(d) that

P(ξj > ∆b−2
∗ ) ≤ 2e−∆/8 = s−1. (2.30)
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Substituting (2.29) and (2.30) into (2.28), we have, for all j ∈ J , that

P
(
ξj ≤ 16∆s−1/2b−2

∗
)
≥ s−1/4.

As a result,
∣∣{j ∈ J : ξj ≤ 16∆s−1/2b−2

∗
}∣∣ is stochastically larger than Bin

(
|J |, s−1/4

)
. Thus,

for s ≥ s0, we have,

Pz,θ
{
qξ(s

−1/2) > 16∆s−1/2b−2
∗
}
≤ P

{
Bin
(
|J |, s−1/4

)
≤ s−1/2|J |

}
≤ e−s1/2/2,

where we have used Hoeffding’s inequality and the fact that |J | ≥ s/2 in the last step. On
the other hand, for sufficiently large s ≥ s0 and sufficiently small β ≤ β0(s), we have,

Ez,θ
{
qξ(s

−1/2)
∣∣∣ qξ(s−1/2) > 16∆s−1/2b−2

∗

}
≤ Ez,θ

{
qξ(s

−1/2)
∣∣∣ qξ(s−1/2) ≥ ∆b−2

∗

}
≤ Ez,θ

{
qξ(1)

∣∣∣ qξ(|J |−1) ≥ ∆b−2
∗

}
= Ez,θ

{
max
j∈J

ξj
∣∣ min
j∈J

ξj ≥ ∆b−2
∗

}
≤

61
(
∆+ 4 log(2/b∗)

)
b2∗

,

where we have used Lemma 2.17(b) in the second inequality and Lemma 2.16(d) (with ∆/4

taking the role of k and b∗/2 taking the role of b there) in the final inequality. As a result,

Ez,θ
{
q(s−1/2)

}
≤ Ez,θ

{
qξ(s

−1/2)
}
≤ 16∆s−1/2b−2

∗ + 61e−s
1/2/2

(
∆+ 4 log(2/b∗)

)
b−2
∗

≤ Cs1/2 log(16s2β−2 log2(2p)) log2(2p)

β2
,

where we have used in the final step the fact that e−s1/2/2 ≤ s−1/2/100 for sufficiently large s.
This proves the desired result for s ≥ s0.

Finally, for s ≤ 256, we have by Lemma 2.16(c) that, for β <
√
s/2,

Ez,θ
{
q(s−1/2)

}
≤ Ez,θ

{
max
j∈J

ξj
}
≤ 32s log(s3/2β−1 log

1/2
2 (2p)) log2(2p)

β2

≤ Cs1/2 log(16s2β−2 log2(2p)) log2(2p)

β2
,

and the desired bound then follows.

We are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2. The proof proceeds with different arguments for the case s ≥ 2 and
the case s = 1.
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Case 1: s ≥ 2. Combining Propositions 2.7 (applied with α = 1) and 2.8, we have

Ēwc
θ (N) ≤

396T̃ off + 65

√
pT̃ off

ϑ2
+

24 log2(2p)

β2
+

24T diags log2(2p)

β2
+ 2.

The desired bound (2.7) then follows by substituting in the expression for T̃ off . On the other
hand, combining Propositions 2.7 (applied with α = s−1/2) and 2.9, we have

Ēθ(N) ≤
396T̃ off + 65

√
pT̃ off

ϑ2
+

24
√
s log2(2p)

β2
+

3Cs1/2 log(16s2β−2 log2(2p)) log2(2p)

β2
+ 2,

which proves (2.8).
Case 2: s = 1. There exists j∗ ∈ [p] such that |θj∗ | ≥ ϑ/

√
log2(2p), and recall from (2.18)

that b∗ := sgn(θj∗)β/
√
log2(2p) ∈ B. Note that Sdiag

n,1 = max(j,b)∈[p]×(B∪B0)R
j
n,b ≥ R

j∗
n,b∗

. We
define R̄n :=

∑z+n
i=z+1 b∗(X

j∗
i − b∗/2) for n ∈ N0. Since Rj∗z,b∗ ≥ 0 = R̄0 and Rn − Rn−1 =

b∗(X
j∗
z+n − b∗/2) ≤ Rj∗z+n,b∗ − R

j∗
z+n−1,b∗

, it follows by induction that Rj∗z+n,b∗ ≥ R̄n for all
n ∈ N0. Then, for n ≥ ⌈4T diag/(b∗θ

j∗)⌉ =: n0, we have

Pz,θ(N > z + n | X1 = x1, . . . , Xz = xz) ≤ Pz,θ
(
Rj∗z+n,b∗ ≤ T

diag
∣∣ X1 = x1, . . . , Xz = xz

)
≤ Pz,θ

(
R̄n ≤ T diag

)
= Φ

(
−b∗n(θ

j∗ − b∗/2)− T diag

n1/2b∗

)
≤ 1

2
exp

{
−(b∗nθ

j∗/2− T diag)2

2nb2∗

}
≤ 1

2
e−n(θ

j∗ )2/32.

Therefore,

Ez,θ
{
(N − z) ∨ 0 | X1 = x1, . . . , Xz = xz

}
=

∞∑
n=0

Pz,θ(N > z + n | X1 = x1, . . . , Xz = xz)

≤ n0 +
1

2

∞∑
n=n0

e−n(θ
j∗ )2/32 ≤ n0 +

1

2

∫ ∞

0
e−u(θ

j∗ )2/32 du ≤ 1 +
4T diag

b∗θj∗
+

16

(θj∗)2
. (2.31)

After substituting in the expressions for b∗, θj∗ and T diag, we see that

Ēθ(N) ≤ Ēwc
θ (N) ≤ 1 +

4 log(16pγ log2(4p)) log2(2p)

βϑ
+

16 log2(2p)

ϑ2
,

which proves both (2.7) and (2.9).

2.5.2 Proofs from Sections 2.3.2 and 2.3.3

Proof of Theorem 2.3. It suffices to only prove P0(N
off ≤ m) ≤ 1/4, since the remaining

proof is identical to that of Theorem 2.1.
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Since Λk,jb | τ
j
b

iid∼ N (0, τ jb ) for all b ∈ B, j ∈ [p] and k ∈ [p]\{j} under the null, by the fact
that T off ≥ 12 and Lemma 2.20, we have

P0

(
Qjn,b ≥ T

off
∣∣ τ jn,b) ≤ P0

(
Qjn,b ≥ 6 + T off/2

∣∣ τ jn,b) ≤ exp(−T off/8).

Hence, it follows that
P0(N

off ≤ m) ≤ |B|mpe−T off/8 ≤ 1/4, (2.32)

as desired.

Proof of Theorem 2.4. We note that the case s = 1 in the proof of Theorem 2.2 does not rely
on the off-diagonal statistics. Hence (2.31) is still valid here with a =

√
8 log(p− 1) and the

last expression in (2.31) again proves the desired bound (2.10). For the case s ≥ 2, we follow
exactly the proof of Proposition 2.7 until (2.24), with the only exception that we now fix,
instead of (2.21),

r ≥
{
24T off log2(2p)

ϑ2
∨ 96s log2(2p) log p

ϑ2
∨ 3q(α)

}
+ 2 =: r̃0. (2.33)

By the definition of the effective sparsity of θ, for a fixed j ∈ Jα,

Lj :=
{
j′ ∈ [p] : |θj′ | ≥ ϑ√

s log2(2p)
and j′ ̸= j

}

has cardinality at least s− 1. On the event Ωjr, we have, by (2.23), that for all k ∈ Lj

|θk|
√
τ jz+⌊r⌋,b∗ ≥

√
ϑ2⌊r⌋

3s log2(2p)
=: ãr.

We then observe, by (2.33), that

ãr ≥
√

32 log p > 2a. (2.34)

Now, from (2.24) we have on the event Ωjr that, for all k ∈ Lj ,

Pz,θ

(
Ωjr ∩

{
|Λk,jz+⌊r⌋,b∗ | <

1

2
ãr

√
τ jz+⌊r⌋,b∗

} ∣∣∣∣∣τ jz+⌊r⌋,b∗ , X1 = x1, . . . , Xz = xz

)
≤ 1

2
e−ã

2
r/8 =: qr.

We denote

U j :=

∣∣∣∣∣
{
k ∈ Lj :

{
|Λk,jz+⌊r⌋,b∗ | <

1

2
ãr

√
τ jz+⌊r⌋,b∗

}}∣∣∣∣∣.
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Then, by the Chernoff–Hoeffding binomial tail bound (Hoeffding, 1963, Equation (2.1)), we
have

Pz,θ
(
Ωjr ∩

{
U j ≥ |Lj |/2

} ∣∣∣ τ jz+⌊r⌋,b∗ , X1 = x1, . . . , Xz = xz

)
≤ exp

{
−|L

j |
2

log

(
1

4qr(1− qr)

)}
≤ exp

{
|Lj |

(
log 2

2
− ã2r

16

)}
≤ exp

{
−3|Lj |ã2r

64

}
≤ exp

{
− ϑ2⌊r⌋
128 log2(2p)

}
, (2.35)

where the penultimate inequality follows from (2.34). Now, on the event Ωjr ∩
{
U j < |Lj |/2

}
,

we have

∑
j′∈[p]:j′ ̸=j

(
Λj

′,j
z+⌊r⌋,b∗

)2
τ jz+⌊r⌋,b∗ ∨ 1

1{
|Λj′,j

z+⌊r⌋,b∗
|≥a

√
τ j
z+⌊r⌋,b∗

}
≥

∑
j′∈[p]:j′ ̸=j

(
Λj

′,j
z+⌊r⌋,b∗

)2
τ jz+⌊r⌋,b∗ ∨ 1

1{
|Λj′,j

z+⌊r⌋,b∗
|≥ ãr

2

√
τ j
z+⌊r⌋,b∗

} ≥ ã2r
4

{
|Lj | −

(⌈ |Lj |
2

⌉
− 1
)}

=
ã2r
4

⌈
|Lj |+ 1

2

⌉
≥ ϑ2⌊r⌋

24 log2(2p)
≥ T off , (2.36)

where the penultimate inequality uses the fact that |Lj | ≥ s− 1 and the last inequality follows
from (2.33). We now denote

Ẽjr :=

{ ∑
j′∈[p]:j′ ̸=j

(
Λj

′,j
z+⌊r⌋,b∗

)2
τ jz+⌊r⌋,b∗ ∨ 1

1{
|Λj′,j

z+⌊r⌋,b∗
|≥a

√
τ j
z+⌊r⌋,b∗

} < T off

}
.

Combining (2.22), (2.35) and (2.36), we deduce that

Pz,θ
(
N > z + r

∣∣ X1 = x1, . . . , Xz = xz
)
≤ Pz,θ

(
N > z + ⌊r⌋

∣∣ X1 = x1, . . . , Xz = xz
)

≤ Pz,θ
( ⋂
j∈Jα

(Ωjr)
c

∣∣∣∣ X1 = x1, . . . , Xz = xz

)
+

∑
j∈Jα

Pz,θ
(
Ẽjr ∩ Ωjr

∣∣∣ X1 = x1, . . . , Xz = xz

)
≤ Pz,θ

( ⋂
j∈Jα

(Ωjr)
c

∣∣∣∣ X1 = x1, . . . , Xz = xz

)
+

∑
j∈Jα

Pz,θ
(
Ωjr ∩

{
U j ≥ |Lj |/2

} ∣∣∣ X1 = x1, . . . , Xz = xz

)
≤ exp

{
−αsb

2
∗(r − 1)

24

}
+ p exp

{
− ϑ2(r − 1)

128 log2(2p)

}
.



2.5 Proofs of main results 55

Therefore we have

Ez,θ
{
(N − z) ∨ 0

∣∣ X1 = x1, . . . , Xz = xz
}

=

∫ ∞

0
Pz,θ

(
N > z + u

∣∣ X1 = x1, . . . , Xz = xz
)
du

≤ r̃0 +
∫ ∞

r̃0−1

[
exp

{
−αsb

2
∗u

24

}
+ p exp

{
− ϑ2u

128 log2(2p)

}]
∧ 1 du

≤ r̃0 +
24

αsb2∗
+

∫ ∞

0

(
pe

− ϑ2u
128 log2(2p)

)
∧ 1 du ≤ r̃0 +

24

αsb2∗
+

128 log2(2p) log(ep)

ϑ2

≤ 24T off log2(2p) + 96s log2(2p) log p

ϑ2
+ 3q(α) +

24 log2(2p)

αβ2
+

128 log2(2p) log(ep)

ϑ2
+ 2.

Combining this with Proposition 2.8 (applied with α = 1), we have, by substituting in the
expression for T off , that

Ēθ(N) ≤ Ēwc
θ (N) ≤ C

{
s log(epγ) log(ep)

β2
∨ 1

}
,

for some universal constant C > 0, as desired.

Proof of Theorem 2.5. Let T off,d = ψ(T̃ off,d). Then, similar to (2.16), (2.17) and (2.32), we
have

P0(N
diag ≤ m) ≤ mp|B ∪ B0|e−T

diag ≤ 1/6,

P0(N
off,d ≤ m) ≤ mp|B|e−T̃ off,d/2 ≤ 1/6,

P0(N
off,s ≤ m) ≤ mp|B|e−T off,s/8 ≤ 1/6.

and hence,

E0(N) = E0(N
diag ∧Noff,d ∧Noff,s) ≥ 2γP0(N

diag ∧Noff,d ∧Noff,s > 2γ)

≥ 2γ
{
1− P0(N

diag ≤ m)− P0(N
off,d ≤ m)− P0(N

off,s ≤ m)
}
≥ γ,

as desired.

Proof of Theorem 2.6. We observe that

Ēwc
θ (N) = Ēwc

θ

[
(Ndiag ∧Noff,d) ∧ (Ndiag ∧Noff,s)

]
≤ Ēwc

θ

[
(Ndiag ∧Noff,d)

]
∧Ēwc

θ

[
(Ndiag ∧Noff,s)

]
,

and similarly for Ēθ(N). The desired bounds (2.11), (2.12) and (2.13) are therefore direct
consequences of Theorems 2.2 and 2.4 (note that the different constants in the thresholds
only affect the value of the universal constant).
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2.6 Auxiliary results

Lemma 2.10. For n ∈ N0, b ∈ B ∪ B0 and j ∈ [p], we define Rjn,b := bAj,jn,b − b
2tjn,b/2, where

An,b and tn,b are taken from Algorithm 2.2 in the main text. Then

Rjn,b = max
0≤h≤n

n∑
i=n−h+1

b(Xj
i − b/2). (2.37)

Proof. We prove the claim by induction on n. The base case n = 0 is true since, by definition,
Rj0,b = 0 and the sum on the right-hand side of (2.37) is empty. Assume (2.37) is true for
n = m− 1. Then, by the update procedure in Algorithm 2.2 in the main text, we have

Rjm,b =
{
Rjm−1,b + b(Xj

m − b/2)
}
∨ 0 =

{
max

0≤h≤m−1

m−1∑
i=m−h

b(Xj
i − b/2) + b(Xj

m − b/2)
}
∨ 0

=

{
max

0≤h≤m−1

m∑
i=m−h

b(Xj
i − b/2)

}
∨ 0 = max

0≤h≤m

m∑
i=m−h+1

b(Xj
i − b/2),

and the desired result follows.

Lemma 2.11. For n ∈ N0, b ∈ B ∪ B0 and j ∈ [p], let tjn,b be defined as in Algorithm 2.2 in
the main text and Rjn,b as in Lemma 2.10. Then

tjn,b = min
{
0 ≤ i ≤ n : Rjn−i,b = 0

}
= sargmax

0≤h≤n

n∑
i=n−h+1

b(Xj
i − b/2). (2.38)

Proof. We observe from the procedure in Algorithm 2.2 in the main text that Rjn,b = 0 if and
only if tjn,b = 0 and that Rjn,b > 0 if and only if tjn,b = tjn−1,b + 1. Hence,

tjn,b = n−max
{
0 ≤ i ≤ n : Rji,b = 0

}
= min

{
0 ≤ i ≤ n : Rjn−i,b = 0

}
.

We now prove that tjn,b = sargmax0≤h≤n
∑n

i=n−h+1 b(X
j
i − b/2) by induction on n. The base

case n = 0 is true because tjn,b = 0, and the sum on the right-hand side of (2.38) is empty.
Assume the claim is true for n = m− 1. Then, by the inductive hypothesis and Lemma 2.10,

tjm,b = (tjm−1,b + 1)1{Rj
m,b>0} =

(
sargmax
0≤h≤m−1

m−1∑
i=m−h

b(Xj
i − b/2) + 1

)
1{Rj

m,b>0}

=

(
sargmax
1≤h≤m

m∑
i=m−h+1

b(Xj
i − b/2)

)
1{

max0≤h≤m
∑m

i=m−h+1 b(X
j
i −b/2)>0

}
= sargmax

0≤h≤m

m∑
i=m−h+1

b(Xj
i − b/2),
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and the desired result follows.

For two distributions P0 and P1 on the same measurable space, the sequential probability
ratio test of H0 : X1, X2, . . .

iid∼ P0 against H1 : X1, X2, . . .
iid∼ P1 with log-boundaries a > 0

and b < 0 is defined as the (extended) stopping time

N := inf

{
n :

n∑
i=1

log
dP1

dP0
(Xi) ̸∈ (b, a)

}
,

together with the decision rule after stopping that accepts H0 if
∑N

i=1 log{(dP1/dP0)(X)} ≤ b
and accepts H1 if

∑N
i=1 log{(dP1/dP0)(X)} ≥ a.

Lemma 2.12. Suppose N is the stopping time associated with the (one-sided) sequential
probability ratio test of H0 : X1, X2, . . .

iid∼ P0 against H1 : X1, X2, . . .
iid∼ P1 with log-boundaries

a > 0 and b = −∞. Then
P0(N <∞) ≤ e−a.

Proof. Let Ln :=
∏n
i=1(dP1/dP0)(Xi). On the event {N <∞}, we have LN ≥ ea. Therefore,

P0(N <∞) =
∞∑
n=1

P0(N = n) ≤ e−a
∞∑
n=1

E0(Ln1{N=n}) = e−a
∞∑
n=0

P1(N = n) ≤ e−a,

which proves the desired result.

Lemma 2.13. Assume that X1, X2, . . . are generated according to Pz,θ for some z and θ such
that ∥θ∥2 = ϑ ≥ β > 0. Then the output N from Algorithm 2.2, with inputs (Xt)t∈N, β > 0,
a ≥

√
8 log(p− 1), T diag = log{16pγ log2(4p)} and T off = 8 log{16pγ log2(2p)}, satisfies

Pz,θ(N ≤ z) ≤
z

4γ
.

Proof. This follows from (2.17) in the proof of Theorem 2.1 and (2.32) in the proof of
Theorem 2.3.

Lemma 2.14. Let X, Y and Z be real-valued random variables. Assume that (X,Y ) and Z
are independent. Let PZ|Z≤Y be the conditional distribution of Z given Z ≤ Y . Then

P(X ≥ Z | Y ≥ Z) =
∫
R
P(X ≥ u | Y ≥ u) dPZ|Z≤Y (u).

Proof. Let PY and PZ denote the marginal distribution of Y and Z respectively. Then, by
the definition of PZ|Z≤Y , we have

PZ|Z≤Y
(
[u,∞)

)
= P(Z ≥ u | Z ≤ Y ) =

P(Y ≥ Z ≥ u)
P(Y ≥ Z)

=

∫
R2 1{y≥z≥u} dPY (y)dPZ(z)

P(Y ≥ Z)
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=

∫∞
u P(Y ≥ z) dPZ(z)

P(Y ≥ Z)
,

where we have used the assumption that Y and Z are independent in the penultimate equality.
Hence,∫

R
P(X ≥ u | Y ≥ u) dPZ|Z≤Y (u) =

∫
R
P(X ≥ u | Y ≥ u) P(Y ≥ u)

P(Y ≥ Z)
dPZ(u)

=

∫
R P(X ≥ u, Y ≥ u) dPZ(u)

P(Y ≥ Z)
=

P(X ≥ Z, Y ≥ Z)
P(Y ≥ Z)

= P(X ≥ Z | Y ≥ Z),

where we have used the assumption that (X,Y ) and Z are independent in the penultimate
equality.

The proof of Lemma 2.16 below relies on the following result, due to Groeneboom (1989).
It involves the Airy function Ai, defined for x ∈ R by

Ai(x) :=
1

π
lim
b→∞

∫ b

0
cos

(
t3

3
+ xt

)
dt.

Lemma 2.15 (Corollary 3.4 of Groeneboom 1989). Let (Wt)t∈R be a two-sided standard
Brownian motion and Z := argmaxt∈R(Wt − t2). Then Z has a density fZ on R which is
symmetric about zero, and which satisfies

fZ(z) =
1

2

44/3|z|
Ai′(ã1)

exp
(
−2

3
|z|3 + 21/3ã1|z|

)
{1 + o(1)}

as z → ∞, where ã1 ≈ −2.3381 is the largest zero of the Airy function Ai and where
Ai′(ã1) ≈ 0.7022.

In particular, there exists a universal constant K ≥ 1 such that fZ(z) ≥ ze−z
3 for

z ≥ K1/3.

We collect in the following lemma some useful bounds on both the maximum and the
argmax of a Brownian motion and a Gaussian random walk with a negative drift.

Lemma 2.16. Fix b > 0, and let (Zt)t≥0 be given by Zt =Wt − bt for t ≥ 0, where (Wt)t≥0

is a standard Brownian motion. Define M̂ := supt≥0 Zt and M := supr∈N0
Zr.

(a) For any a ≥ 0, we have

2
√
ab√

2π(4ab+ 1)
e−2ab ≤ P(M̂ ≥ a) ≤ e−2ab



2.6 Auxiliary results 59

and

3
√
ab/2√

2π(9ab/2 + 1)
e−9ab/4

1{a≥b} +
2b√

2π(4b2 + 1)
e−2b2

1{a<b} ≤ P(M ≥ a) ≤ e−2ab.

(b) If c ≥ 0 satisfies bc ≥ a ≥ 0, then

P
(

sup
r∈N:r≥c

Zr ≥ a
)
≤ P

(
sup
t≥c

Zt ≥ a
)
≤ exp

{
−(bc+ a)2

2c

}
.

Now let ξ̂ := argmaxt≥0 Zt and ξ := argmaxr∈N0
Zr. Then ξ̂ and ξ are both almost

surely unique. Moreover, letting ξ1, . . . , ξs denote independent copies of ξ, we have the
following results:

(c) If b ≤ 1/2, then

E
(
max
j∈[s]

ξj
)
≤ 8 log(s/b)

b2
.

(d) Taking K ≥ 1 from Lemma 2.15, for all k ≥ K we have

e−2k ≤ P(ξ̂ ≥ kb−2) ≤ e−k/2.

Moreover, for each k ≥ K, there exists b0 > 0, depending only on k, such that for all
b ≤ b0 we have

1

2
e−2k ≤ P(ξ ≥ kb−2) ≤ 2e−k/2 (2.39)

and
E
(
max
j∈[s]

ξj
∣∣∣ min
j∈[s]

ξj ≥ kb−2
)
≤ 60

b2
{
k + log(1/b)

}
+ sb5.

Proof. (a) Since M ≤ M̂ , we have

P(M ≥ a) ≤ P(M̂ ≥ a) = P
(
sup
t≥0

(Wt − bt) ≥ a
)
= e−2ab,

where the calculation for the final equality can be found in, e.g. Siegmund (1986, Proposition
2.4 and Equation (2.5)). For the lower bounds, we note that

P(M̂ ≥ a) ≥ sup
t≥0

P(Zt ≥ a) = sup
t≥0

Φ

(
−a+ bt√

t

)
= Φ

(
−2
√
ab
)
.

Similarly, assuming without loss of generality that a > 0 (since otherwise the result is clear),

P(M ≥ a) ≥ sup
r∈N

P(Zr ≥ a) = sup
r∈N

Φ

(
−a+ br√

r

)
≥ Φ

(
−a+ br0√

r0

)
,



60 A high-dimensional, multiscale online changepoint detection procedure

where r0 = ⌈a/b⌉ ∨ 1. If a ≥ b, then using the fact that the function x 7→ (a + bx)/
√
x is

increasing on [
√
a/b,∞), we have

a+ br0√
r0
≤ a+ b(a/b+ 1)√

a/b+ 1
= 2
√
b · a+ b/2√

a+ b
≤ 2
√
b

(
a+

b2/4

a+ b

)1/2

≤ 3
√
ab/2.

On the other hand, if a < b, then

a+ br0√
r0

= a+ b < 2b.

The desired results follow from the bound Φ(−x) ≥ x√
2π(x2+1)

e−x
2/2 for all x > 0.

(b) By part (a), we have

P
(

sup
r∈N:r≥c

Zr ≥ a
)
≤ P

(
sup
t≥c

Zt ≥ a
)
=

∫ ∞

−∞
P
(
sup
t≥c

Zt ≥ a | Zc = x
) 1√

2πc
e−(x+bc)2/(2c) dx

≤
∫ a

−∞
e−2(a−x)b 1√

2πc
e−(x+bc)2/(2c) dx+

∫ ∞

a

1√
2πc

e−(x+bc)2/(2c) dx

= e−2abΦ

(
−bc− a√

c

)
+Φ

(
−bc+ a√

c

)
≤ exp

{
−(bc+ a)2

2c

}
,

where in the final step we have used the fact that bc ≥ a and Φ(−x) ≤ e−x2/2/2 for x ≥ 0.

To prove that ξ is almost surely unique, it suffices to note that

P(ξ not unique) ≤ P
( ⋃
r1,r2∈N0:r1<r2

{Zr1 = Zr2}
)
≤

∑
r1,r2∈N0:r1<r2

P
(
Zr2 − Zr1 = 0

)
= 0,

since Zr2 −Zr1 ∼ N
(
−b(r2 − r1), r2 − r1

)
. To prove that ξ̂ is almost surely unique, note that

P(ξ̂ not unique) ≤ P
( ⋃
q1,q2∈Q:0<q1<q2

{
max
t∈[0,q1]

Zt = max
t∈[q2,∞)

Zt

})
≤

∑
q1,q2∈Q:0<q1<q2

P
(
max
t∈[0,q1]

Zt = max
t∈[q2,∞)

Zt

)
=

∑
q1,q2∈Q:0<q1<q2

P
((

max
t∈[q2,∞]

Zt − Zq2
)
=
(
Zq2 − Zq1

)
−
(
max
t∈[0,q1]

Zt − Zq1
))

= 0,

where we have used the Markov property of (Zt)t≥0 for the final equality.
(c) For any x ∈ N, we have by two union bounds that

P
(
max
j∈[s]

ξj ≥ x
)
≤ s

∞∑
r=x

P(ξ = r) ≤ s
∞∑
r=x

P(Sr ≥ 0)



2.6 Auxiliary results 61

= s
∞∑
r=x

Φ(−b
√
r) ≤ s

2

∞∑
r=x

e−rb
2/2 =

se−xb
2/2

2(1− e−b2/2)
.

Now define x0 := ⌈4b−2 log(s/b)⌉. Then for b ∈ (0, 1/2],

E
(
max
j∈[s]

ξj
)
=

∞∑
x=1

P
(
max
j∈[s]

ξj ≥ x
)
≤ x0 − 1 +

∞∑
x=x0

se−xb
2/2

2(1− e−b2/2)

≤ 4 log(s/b)

b2
+

se−x0b
2/2

2(1− e−b2/2)2
≤ 4 log(s/b)

b2
+

2

b2(1− 1/16)2

≤ 8 log(s/b)

b2
,

where we have used the fact that 1− e−x ≥ 15x/16 for x ∈ [0, 1/8].

(d) First note that Wt−b3t2/k ≤Wt−bt for t ≥ kb−2 and Wt−b3t2/k > Wt−bt for t < kb−2.
Thus, using the fact that (Wt)t≥0

d
=
(
a−1Wa2t

)
t≥0

for every a > 0, and taking K ≥ 1 from
Lemma 2.15, we have for k ≥ K that

P(ξ̂ ≥ kb−2) = P
(
argmax
t≥0

(Wt − bt) ≥
k

b2

)
≥ P

(
argmax
t≥0

(
Wt −

b3t2

k

)
≥ k

b2

)

= P

(
argmax
t≥0

(
Wb2k−2/3t

bk−1/3
− b3t2

k

)
≥ k

b2

)
= P

(
argmax
t≥0

(Wt − t2) ≥ k1/3
)

≥
∫ ∞

k1/3
2z exp(−z3) dz ≥

∫ ∞

k1/3

(
3z

2
+

1

2z2

)
exp(−z3) dz = e−k

2k1/3
≥ e−2k,

(2.40)

where the second inequality follows from Lemma 2.15. We also have, by part (b), that

P(ξ̂ ≥ kb−2) = P
(
argmax
t≥0

(Wt − bt) ≥ kb−2

)
≤ P

(
sup

t≥kb−2

(Wt − bt) ≥ 0

)
≤ e−k/2. (2.41)

We now compute upper and lower bounds on the tail probabilities for ξ. By Donsker’s
invariance principle (Mörters and Peres, 2010, Theorem 5.22) and the continuity of the argmax
map (e.g. van der Vaart and Wellner, 1996, Theorem 3.2.2), we have, as b→ 0, that

b2ξ
d
= b2 argmax

r∈N0

(
Wrb2 − rb2

b

)
d
= argmax

r∈b2N0

(Wr − r)
d→ argmax

t≥0
(Wt − t).

Thus there exists b0 > 0, depending only on k, such that for b < b0, we have by (2.40)
and (2.41) that

P(ξ ≥ kb−2) ≥ 1

2
P
(
argmax
t≥0

(Wt − t) ≥ k
)
≥ 1

2
e−2k,
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and that
P(ξ ≥ kb−2) ≤ 2P

(
argmax
t≥0

(Wt − t) ≥ k
)
≤ 2e−k/2.

We now move on to the final claim of Lemma 2.16(d). For r ∈ N0, we define Mr :=

maxr′∈{0,1,...,r} Zr′ and let Pr denote the conditional distribution of Zr − Mr given that
ξ ≥ r. Note that {ξ ≥ r} = {maxr′∈N0:r′≥r Zr′ ≥ Mr} up to a null set. Denote x0 :=

⌊60{k + log(1/b)}/b2⌋ and c := ⌈kb−2⌉. Without loss of generality, we may assume that
b0 < 1/2. Then for b ≤ b0, we have c < x0, so

E
(
max
j∈[s]

ξj
∣∣∣ min
j∈[s]

ξj ≥ c
)
− x0 ≤

∞∑
x=x0

P
(
max
j∈[s]

ξj ≥ x
∣∣∣ min
j∈[s]

ξj ≥ c
)

≤ s
∞∑

x=x0

P
(
ξ1 ≥ x

∣∣∣ min
j∈[s]

ξj ≥ c
)
= s

∞∑
x=x0

P(ξ ≥ x)P(ξ ≥ c)s−1

P(ξ ≥ c)s

= s

∞∑
x=x0

P(ξ ≥ x | ξ ≥ c).

But, for every x ∈ N with x ≥ x0,

P(ξ ≥ x | ξ ≥ c) ≤ P
(

sup
r∈N:r≥x

Zr ≥Mc

∣∣∣ sup
r∈N:r≥c

Zr ≥Mc

)
= P

(
sup

r∈N:r≥x
(Zr − Zc) ≥Mc − Zc

∣∣∣ sup
r∈N:r≥c

(Zr − Zc) ≥Mc − Zc
)

=

∫ ∞

0
P
(

sup
r∈N:r≥x

(Zr − Zc) ≥ u
∣∣∣ sup
r∈N:r≥c

(Zr − Zc) ≥ u
)
dPc(u)

=

∫ ∞

0
P
(

sup
r∈N:r≥x−c

Zr ≥ u
∣∣∣M ≥ u) dPc(u), (2.42)

where the second equality follows from Lemma 2.14 and the fact that Mc −Zc is independent
of the sequence (Zr − Zc)r∈N:r≥c. If b(x− c)/4 ≥ u ≥ b, then by Lemma 2.16(a) and (b) we
have

P
(

sup
r∈N:r≥x−c

Zr ≥ u
∣∣∣M ≥ u) ≤ exp

{
−(b(x− c) + u)2

2(x− c)

}
· 9ub/2 + 1

3
√
ub/(4π)

e9ub/4

≤ e−b2(x−c)/2+5bu/4

(
3
√
πub+

2
√
π/3√
ub

)
≤ e−3b2(x−c)/16

(
3
√
π

2

√
(x− c)b2 + 2

√
π

3b

)
.
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Since the function h 7→ he−h
2/2 is decreasing for h ≥ 1, we have that 3

√
π(x− c)b2/4 +

2
√
π/(3b) ≤ 3eb

2(x−c)/16/2 for x− c ≥ 60b−2 log(1/b), when b ≤ 1/2. Thus,

P
(

sup
r∈N:r≥x−c

Zr ≥ u
∣∣∣M ≥ u) ≤ 3

2
e−b

2(x−c)/8. (2.43)

On the other hand, if b > u (note that this implies b(x− c) ≥ u), then by Lemma 2.16(a) and
(b) we have that

P
(

sup
r∈N:r≥x−c

Zr ≥ u
∣∣∣M ≥ u) ≤ exp

{
−(b(x− c) + u)2

2(x− c)

}
·
√
2π(1 + 4b2)

2b
e2b

2

≤ e−b2(x−c)/2+2b2
(√

2π

2b
+ 2
√
2πb

)
≤
√
2π

b
e−b

2(x−c)/4 ≤
√
2π

213/2
e−b

2(x−c)/8,

where we have used the fact that x − c ≥ 60b−2 log(1/b) ≥ 8 in the final two bounds.
Combining the above display with (2.43), we see that for b(x− c)/4 ≥ u, we have

P
(

max
r∈N:r≥x−c

Zr ≥ u
∣∣∣M ≥ u) ≤ 3

2
e−b

2(x−c)/8. (2.44)

Thus, by reducing b0 > 0 (still depending only on k) if necessary, we have for b ≤ b0 that∫ ∞

0
P
(

sup
r∈N:r≥x−c

Zr ≥ u
∣∣∣M ≥ u) dPc(u)

≤
∫ b(x−c)/4

0
P
(

sup
r∈N:r≥x−c

Zr ≥ u
∣∣∣M ≥ u) dPc(u)

+ P
(
Mc ≥

b(x− c)
8

∣∣∣∣ ξ ≥ c)+ P
(
Zc ≤ −

b(x− c)
8

∣∣∣∣ ξ ≥ c)
≤ 3

2
e−b

2(x−c)/8 + 2e−b
2(x−c)/4e2k + 2Φ

(
−b(x− 9c)

8
√
c

)
e2k ≤ 5e−(b2x−k)/8,

where we have used (2.44), Lemma 2.16(a) and (2.39) in the penultimate inequality, and, in
the final step, we have used the fact that x ≥ 60c, the Gaussian tail bound Φ(−x) ≤ 1

2e
−x2/2

for x ≥ 0 and the fact that

(x− 9c)2

c
≥ (51/59)2(x− c)2

c
≥ 59(51/59)2(x− c) ≥ 32(x− c).

Combining with (2.42), we conclude that

E
(
max
j∈[s]

ξj
∣∣∣ min
j∈[s]

ξj ≥ kb−2
)
− x0 ≤ 5s

∞∑
x=x0

e−(b2x−k)/8 ≤ 5se−15 log(1/b)/2−7

1− e−b2/8
≤ sb5,
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as desired, where we have used again the fact that b ≤ 1/2 in the final inequality.

Lemma 2.17. (a) For any n ∈ N, 0 < p ≤ q < 1 and x ∈ {0, 1, . . . , n}, we have

P
(
Bin(n, p) ≥ x

)
P
(
Bin(n, p/q) ≥ x

) ≤ P
(
Bin(n, q) ≥ x

)
. (2.45)

(b) Let W1, . . . ,Wn be independent and identically distributed, real-valued random variables,
with corresponding order statistics W(1) ≤ . . . ≤W(n). Then for every s ≥ t and every m ∈ [n],
we have that

P(W(m) ≥ s|W(m) ≥ t) ≤ P(W(m) ≥ s|W(1) ≥ t).

In particular, E(W(m)|W(m) ≥ t) ≤ E(W(m)|W(1) ≥ t).

Proof. (a) Let g(p) denote the left-hand side of (2.45). It suffices to prove that g is an
increasing function on (0, q]. We may also assume that x ≥ 1, because otherwise the result is
clear. Now, let

h(p) := P
(
Bin(n, p) ≥ x

)
=

n∑
r=x

(
n

r

)
pr(1− p)n−r.

Then

h′(p) =
n∑
r=x

(
n

r

)
rpr−1(1− p)n−r −

n−1∑
r=x

(
n

r

)
(n− r)pr(1− p)n−r−1

=
n−1∑
r=x−1

n!

r!(n− r − 1)!
pr(1− p)n−r−1 −

n−1∑
r=x

n!

r!(n− r − 1)!
pr(1− p)n−r−1

=
n!

(x− 1)!(n− x)!
px−1(1− p)n−x.

We can therefore compute

g′(p) =
h(p/q)h′(p)− h(p)h′(p/q)/q

h(p/q)2
,

and we note that

h(p/q)h′(p)− h(p)h′(p/q)/q

=
n!

(x− 1)!(n− x)!
px−1(1− p)n−x

n∑
r=x

(
n

r

)(p
q

)r(
1− p

q

)n−r
− n!

(x− 1)!(n− x)!
1

q

(p
q

)x−1(
1− p

q

)n−x n∑
r=x

(
n

r

)
pr(1− p)n−r

=
n!px−1(1− p)n−x(1− p/q)n−x

qx(x− 1)!(n− x)!

n∑
r=x

(
n

r

)
pr
{

1

(q − p)r−x
− 1

(1− p)r−x

}
≥ 0,



2.6 Auxiliary results 65

as required.

(b) Write F for the distribution function of W1, and let F̄ := 1 − F . We also write
F̄ (x−) := limy↗x F̄ (x). For a Borel measurable set A ⊆ R, let N(A) :=

∑n
i=1 1{Wi∈A}. Then,

for s ≥ t,

P(W(m) ≥ s|W(m) ≥ t) =
P(W(m) ≥ s)
P(W(m) ≥ t)

=
P
{
N
(
[s,∞)

)
≥ n−m+ 1

}
P
{
N
(
[t,∞)

)
≥ n−m+ 1

}
=

P
{
Bin
(
n, F̄ (s−)

)
≥ n−m+ 1

}
P
{
Bin
(
n, F̄ (t−)

)
≥ n−m+ 1

} .
On the other hand,

P(W(m) ≥ s|W(1) ≥ t) =
P
(
W(m) ≥ s,W(1) ≥ t

)
P(W(1) ≥ t)

=
P
{
N
(
(−∞, t)

)
= 0, N

(
[s,∞)

)
≥ n−m+ 1

}
P
{
N
(
(−∞, t)

)
= 0
}

=

∑n
r=n−m+1

(
n
r

)
F̄ (s−)r

{
F̄ (t−)− F̄ (s−)

}n−r
F̄ (t−)n

= P
{
Bin
(
n, F̄ (s−)/F̄ (t−)

)
≥ n−m+ 1

}
.

The first conclusion therefore follows immediately from (a), and the second conclusion is an
immediate consequence of the first.

Lemma 2.18. Let v = (v1, . . . , vp)
⊤ ∈ Rp be a unit vector. There exists ℓ ∈ {0, . . . , ⌊log2 p⌋}

such that ∣∣∣∣{j ∈ [p] : v2j ≥
1

2ℓ log2(2p)

}∣∣∣∣ ≥ 2ℓ.

Proof. The case p = 1 is trivially true, so we may assume without loss of generality that
p ≥ 2. Let L := ⌊log2 p⌋, bℓ := 2−ℓ log−1

2 (2p) and nℓ :=
∣∣{j : v2j ≥ bℓ

}∣∣ for ℓ ∈ {0, . . . , L}.
Assume for a contradiction that nℓ < 2ℓ for all ℓ. Then by Fubini’s theorem we have

∥v∥22 =
p∑
j=1

∫ 1

t=0
1{v2j≥t}

dt ≤ n0(1− b0) +
L∑
ℓ=1

nℓ(bℓ−1 − bℓ) + pbL

≤
L∑
ℓ=1

(2ℓ − 1)(bℓ−1 − bℓ) + pbL =

L−1∑
ℓ=0

2ℓbℓ + (p− 2L + 1)bL ≤
L+ 1

log2(2p)
≤ 1.

Note that the penultimate inequality is strict if p+ 1 is not an integer power of 2 and the
final inequality is strict if p is not an integer power of 2. Since p ≥ 2, it cannot be the case
that we have equality in both equalities, so ∥v∥22 < 1, which contradicts the fact that v is a
unit vector.
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Lemma 2.19. Define sequences (an)n∈N0 and (bn)n∈N0 as follows: a0 := b0 := 0, bn :=

(bn−1 + 1)1{n/∈{2ξ:ξ∈N0}} and an := (an−1 + 1)1{n/∈{2ξ:ξ∈N0}} + (bn−1 + 1)1{n∈{2ξ:ξ∈N0}} for
n ∈ N. Then, we have

n/2 ≤ an < 3n/4,

for all n ≥ 2.

Proof. The two sequences (an)n∈N0 and (bn)n∈N0 are tabulated below.

n 0 1 2 3 4 5 6 7 8 . . . 2ξ 2ξ + 1 . . . 2ξ+1 − 1 . . .
an 0 1 1 2 2 3 4 5 4 . . . 2ξ−1 2ξ−1 + 1 . . . 3 · 2ξ−1 − 1 . . .
bn 0 0 0 1 0 1 2 3 0 . . . 0 1 . . . 2ξ − 1 . . .

It is clear from the definition of (bn)n that b2ξ+i = i for ξ ∈ N0 and 0 ≤ i ≤ 2ξ−1. Consequently,
we have a2ξ = b2ξ−1 + 1 = 2ξ−1 and a2ξ+i = 2ξ−1 + i for ξ ∈ N and 1 ≤ i ≤ 2ξ − 1. Hence, we
have

1

2
=

2ξ−1

2ξ
≤

a2ξ+i
2ξ + i

=
2ξ−1 + i

2ξ + i
≤ 2ξ−1 + 2ξ − 1

2ξ + 2ξ − 1
<

3

4
,

for all ξ ∈ N and 0 ≤ i ≤ 2ξ − 1 and the desired result follows.

Lemma 2.20. Let Z1, . . . , Zp
iid∼ N (0, 1). Then for any a > 0 and x > 0, we have

P
( p∑
j=1

Z2
j 1{|Zj |≥a} ≥ 6pe−a

2/8 + 4x

)
≤ e−x.

Proof. This proof has some similarities with that of Lemma 17 of Liu, Gao and Samworth
(2021). By a Chernoff bound, we have for any u, λ > 0 that,

P
( p∑
j=1

Z2
j 1{|Zj |≥a} ≥ u

)
≤ e−λu

{
EeλZ

2
11{|Zj |≥a}

}p
. (2.46)

We write p(x) := (2π)−1/2x−1/2e−x/2 for the density of a χ2
1 distribution. For λ ∈ (0, 1/4],

we bound the moment generating function above as follows:

EeλZ
2
11{|Zj |≥a} =

∫ ∞

a2
eλxp(x) dx ≤ 1 +

∫ ∞

a2
(eλx − 1)p(x) dx = 1 +

∫ ∞

a2

∞∑
k=1

λkxk

k!
p(x) dx

≤ 1 +

∫ ∞

a2
λxeλxp(x) dx ≤ 1 +

λ√
2π

∫ ∞

a2
x1/2e−x/4 dx

= 1 +
4λ√
π

∫ ∞

a/
√
2
t2e−t

2/2 dt = 1 +

√
8

π
λae−a

2/4 + 4
√
2λ
{
1− Φ

( a√
2

)}
≤ 1 +

√
8

π
λae−a

2/4 + 2
√
2λe−a

2/4 ≤ 1 +

(
2

√
8

π
e−1/2 + 2

√
2

)
λe−a

2/8

≤ 1 + 5λe−a
2/8,
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where we use the fact that xe−x2/4 ≤ 2e−1/2e−x
2/8 for x ∈ R in the penultimate inequality.

Hence, by substituting this bound into (2.46), we have for every u > 0, that

P
( p∑
j=1

Z2
j 1{|Zj |≥a} ≥ u

)
≤ exp

{
−λu+ p log(1 + 5λe−a

2/8)
}
≤ exp

(
−λu+ 5pλe−a

2/8
)
.

We set u = 6pe−a
2/8 + 4x. If x ≤ pe−a

2/8/4, choose λ = p−1xea
2/8 ≤ 1/4; if x > pe−a

2/8/4,
choose λ = 1/4. In both cases, we have

P
( p∑
j=1

Z2
j 1{|Zj |≥a} ≥ u

)
≤ e−x,

as required.





Chapter 3

Inference in high-dimensional online
changepoint detection

3.1 Introduction

In the field of high-dimensional statistical inference, uncertainty quantification has become a
major theme over the last decade, originating with influential work on the debiased Lasso in
(generalised) linear models (Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang
and Zhang, 2014), and subsequently developed in other settings (e.g. Janková and van de
Geer, 2015; Yu, Bradic and Samworth, 2021). Inference problems associated with multiple
(offline) changepoints are also being studied in recent years. A number of approaches have
become popular including simultaneous multiscale changepoint estimation (Frick, Munk and
Sieling, 2014), false discovery rate control (e.g. Li, Munk and Sieling, 2016; Cheng, He and
Schwartzman, 2020), post-selection inference (e.g. Hyun, G’Sell and Tibshirani, 2018; Jewell,
Fearnhead and Witten, 2022) and narrowest significance pursuit (Fryzlewicz, 2021a).

The aim of this chapter is to propose methods to address two new inferential challenges
associated with the high-dimensional, sequential detection of a sparse change in mean. The
first is to provide a confidence interval for the location of the changepoint, while the second
is to estimate the signal set of indices of coordinates that undergo the change. Despite
the importance of uncertainty quantification and signal support recovery in changepoint
applications, neither of these problems has previously been studied in the multivariate
sequential changepoint detection literature, to the best of our knowledge. Of course, one
option here would be to apply an offline confidence interval construction after a sequential
procedure has declared a change. However, this would be to ignore the essential challenge
of the sequential nature of the problem, whereby one wishes to avoid storing all historical
data, to enable inference to be carried out in an online manner, see Chapter 1. This online
requirement turns out to impose severe restrictions on the class of algorithms available to the
practitioner, and lies at the heart of the difficulty of the problem.
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To give a brief outline of our construction of a confidence interval with guaranteed (1−α)-
level coverage, consider for simplicity the univariate setting, where (Xn)n∈N form a sequence
of independent random variables with X1, . . . , Xz

iid∼ N (0, 1) and Xz+1, Xz+2, . . .
iid∼ N (θ, 1).

Without loss of generality, we assume that θ > 0. Suppose that θ is known to be at least
b > 0 and, for n ∈ N, let1

tn,b := argmax
0≤h≤n

n∑
i=n−h+1

(Xi − b/2). (3.1)

Since
∑n

i=n−h+1(Xi− b/2) can be viewed as the likelihood ratio statistic for testing the null of
N (0, 1) against the alternative of N (b, 1) using Xn−h+1, . . . , Xn, the quantity tn,b is the tail
length for which the likelihood ratio statistic is maximised. If N is the stopping time defining
a good sequential changepoint detection procedure, then, intuitively, N − tN,b should be close
to the true changepoint location z, and almost pivotal. This motivates the construction of
a confidence interval of the form

[
max

{
N − tN,b − g(α, b), 0

}
, N
]
, where we control the tail

probability of the distribution of N−tN,b to choose g(α, b) so as to ensure the desired coverage.
In the multivariate case, considerable care is required to handle the post-selection nature of
the inferential problem, as well as to determine an appropriate left endpoint for the confidence
interval. For this latter purpose, we only assume a lower bound on the Euclidean norm of the
vector of mean change, and employ a delicate multivariate and multiscale aggregation scheme;
see Section 3.2 for details.

In terms of the base sequential changepoint detection procedures, we focus on the ocd

algorithm (short for online changepoint detection) introduced in Section 2.2, as well as its
variant ocd′, which provides guarantees on both the average and worst-case detection delays,
subject to a guarantee on the patience, or average false alarm rate under the null hypothesis
of no change. Crucially, these are both online algorithms. Our confidence intervals, which
we correspondingly denote ocd_CI and ocd_CI′, inherit this same online property, thereby
making them applicable even in very high-dimensional settings and where changes may be
rare, so that we may need to see many new data points before declaring a change.

In Section 3.3 we study the theoretical performance of the ocd_CI′ procedure. In particular,
we prove in Theorem 3.1 that, for a suitable choice of input parameters, the confidence interval
has at least nominal coverage. Moreover, Theorem 3.2 ensures that, with high probability, its
length is of the same order as the average detection delay for the base ocd′ procedure, up to
a logarithmic factor. This is remarkable in view of the intrinsic challenge that the better such
a changepoint detection procedure performs, the fewer post-change observations are available
for inferential tasks.

A very useful byproduct of our ocd_CI methodology is that we obtain a natural estimate
of the set of signal coordinates (i.e. those that undergo change). In Theorem 3.3, we prove

1In the case of a tie, we choose the smallest h achieving the maximum.
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that, with high probability, it is able both to recover the effective support of the signal (see
Section 3.3.1 for a formal definition), and avoids noise coordinates.

Section 3.4 is devoted to a study of the numerical performance of our methodological
proposals. Our simulations confirm that the ocd_CI methodology attains the desired coverage
level across a wide range of parameter settings, that the average confidence interval length is
of comparable order to the average detection delay and that our support recovery guarantees
are validated empirically. Moreover, in Section 3.4.4, we illustrate the practical utility of our
methods by applying them to both excess death data during the COVID-19 pandemic in the
US and S&P 500 data during the 2007–2008 financial crisis.

Proofs are given in Section 3.5, with auxiliary results deferred to Section 3.6. An R

implementation of our methodology is available at github.com/yudongchen88/ocd_CI.

3.2 Confidence interval construction and support estimation
methodology

In the multivariate sequential changepoint detection problem, we observe p-variate observations
X1, X2, . . . in turn, and seek to report a stopping time N by which we believe a change has
occurred. The focus here is on changes in the mean of the underlying process, and we denote
the time of the changepoint by z. Moreover, since our primary interest is in high-dimensional
settings, we will also seek to exploit sparsity in the vector of mean change. Given α ∈ (0, 1),
then, our primary goal is to construct a confidence interval C ≡ C(X1, . . . , XN , α) with the
property that z ∈ C with probability at least 1− α.

The algorithm takes inputs X1, X2, . . . ∈ Rp, observed sequentially, a known lower bound
β > 0 for the ℓ2-norm of the vector of mean change, a hard thresholding level a ≥ 0 that can
be chosen to detect dense or sparse signals, two changepoint declaration thresholds T diag > 0

and T off > 0, and two parameters d1 and d2 for confidence interval construction.
The first part of the algorithm is online changepoint detection, where we use the ocd

algorithm (Algorithm 2.1). Recall that the ocd algorithm relies on the lower bound β > 0

and sets of signed scales B and B0 defined in terms of β (see Section 2.2).
From our perspective, the key aspects of this multiscale algorithm are that, in addition

to returning a stopping time N as output, it produces a matrix of residual tail lengths
(tjN,b)j∈[p],b∈B∪B0

with tjN,b := sargmax0≤h≤N
∑N

i=N−h+1(X
j
i − b/2) (similarly to (3.1)), an

‘anchor’ coordinate ĵ ∈ [p], a signed anchor scale b̂ ∈ B and a tail partial sum vector A·,ĵ
N,b̂
∈ Rp

with jth component Aj,ĵ
N,b̂

:=
∑N

i=N−tĵ
N,b̂

+1
Xj
i , where

(ĵ, b̂) := argmax
(j,b)∈[p]×B

QjN,b,

github.com/yudongchen88/ocd_CI
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with QjN,b being the off-diagonal statistics defined in (2.4) at the time of changepoint declara-
tion.

The intuition is that the anchor coordinate and signed scale are chosen so that the final
tĵ
N,b̂

observations provide the best evidence among all of the residual tail lengths against the

null hypothesis of no change. Meanwhile, A·,ĵ
N,b̂

aggregates the last tĵ
N,b̂

observations in each
coordinate, thereby providing a measure of the strength of this evidence against the null.

The main idea of our confidence interval construction is to seek to identify coordinates with
large post-change signal. To this end, observe when tĵ

N,b̂
is not too much larger than N − z,

the quantity Ej,ĵ
N,b̂

:= Aj,ĵ
N,b̂
/(tĵ

N,b̂
∨ 1)1/2 should be centred close to θj(tĵ

N,b̂
)1/2 for j ∈ [p] \ {ĵ},

with variance close to 1. Indeed, if ĵ, b̂, N and tĵ
N,b̂

were fixed, and if 0 < tĵ
N,b̂
≤ N − z,

then the former quantity would be normally distributed around this centering value, with
unit variance. The random nature of these quantities, however, introduces a post-selection
inference aspect to the problem. Nevertheless, by choosing an appropriate threshold value
d1 > 0, we can ensure that with high probability, when j ≠ ĵ is a noise coordinate, we have
|Ej,ĵ

N,b̂
| < d1, and when j ̸= ĵ is a coordinate with sufficiently large signal, there exists a signed

scale b ∈ (B∪B0)∩ [−|θj |, |θj |], having the same sign as θj , for which
∣∣Ej,ĵ

N,b̂

∣∣−|b|(tĵ
N,b̂

)1/2 ≥ d1.
In fact, such a signed scale, if it exists, can always be chosen to be from B0. Thus we denote
the set of indices j for which the latter inequality holds:

Ŝ :=
{
j ∈ [p] \ {ĵ} :

∣∣Ej,ĵ
N,b̂

∣∣− bmin(t
ĵ

N,b̂
)1/2 ≥ d1

}
.

Based on the discussions above, Ŝ, as a convenient byproduct of our algorithm, forms a
natural estimate of the set of coordinates in which the mean change is large.

For each j ∈ Ŝ, there exists a largest scale b ∈ (B ∪ B0) ∩ (0,∞) for which
∣∣Ej,ĵ

N,b̂

∣∣ −
b(tĵ

N,b̂
)1/2 ≥ d1. We denote the signed version of this quantity, where the sign is chosen to

agree with that of Ej,ĵ
N,b̂

, by b̃j :

b̃j ← sgn
(
Ej,ĵ
N,b̂

)
max

{
b ∈ (B ∪ B0) ∩ (0,∞) :

∣∣Ej,ĵ
N,b̂

∣∣− b(tĵ
N,b̂

)1/2 ≥ d1
}
.

This can be regarded as a shrunken estimate of θj , and therefore plays the role of the
lower bound b from the univariate problem discussed in the introduction. Finally, then, our
confidence interval can be constructed as the intersection over indices j ∈ Ŝ of the confidence
interval from the univariate problem in coordinate j, with signed scale b̃j .

Pseudo-code for this ocd_CI confidence interval construction is given in Algorithm 3.1,
where we suppress the n dependence on quantities that are updated at each time step. The
computational complexity per new observation, as well as the storage requirements, of this
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algorithm are O
(
p2 log(ep)

)
regardless of the observation history, so it satisfies the condition

to be an online algorithm, as discussed in the introduction.
We now discuss a few technical details of the algorithm. The right endpoint of the

confidence interval constructed in the ocd_CI algorithm is chosen to be the changepoint
declaration time N . This is motivated by the fact that the probability of a false alarm
(i.e. N ≤ z) is small for a good changepoint detection procedure. However, when γ is very
big, this may lead to an unbalanced confidence interval. In other words, the probability
of the right endpoint of the confidence interval being smaller than z is tiny. To overcome
this issue, we could try to control the conditional coverage probability P(L ≤ z | N ≥ z)

instead, where L is the left endpoint of the confidence interval. However, we remark that
P(L ≤ z | N ≥ z) ≥ 1 − α does not imply any guarantee on the unconditional coverage
probability P(L ≤ z ≤ N). Another approach is to use a different right endpoint for the
confidence interval, for example N −maxj∈Ŝ

{
tj
N,b̃j

+
d′2

(b̃j)2

}
, which is somewhat similar to

the current left endpoint. Extra care, though, is needed to guarantee that this is a valid and
non-trivial interval, i.e. the left endpoint is smaller than the right endpoint. In this chapter,
we will focus on the right endpoint being chosen to be N and not pursue the analysis of the
aforementioned approaches.

The ocd_CI algorithm only works for p ≥ 2, since otherwise the support estimate Ŝ would
be empty. The univariate problem has been discussed in Section 3.1 as a foundation for the
ocd_CI algorithm. The case when there is only one ‘strong’ signal coordinate (see below
in Section 3.3 for a formal definition of effective sparsity) is also interesting. The anchor
coordinate will most likely be a noise coordinate, since its off-diagonal statistic needs to be
the biggest, Then, as long as the corresponding tail length is not too bigger than N − z, that
one signal coordinate will enter Ŝ and provide a good confidence interval by itself.

In the formal definition of the support estimate Ŝ in the algorithm, we have not included
the anchor coordinate ĵ. One reason has been discussed in the previous paragraph. Another
reason is that if we had included ĵ, it would introduce more complicated dependence between
coordinates in the theoretical analysis. However, our support recovery result (see Theorem 3.3
below) covers both Ŝ and Ŝ ∪ {ĵ} as support estimates.

3.2.1 A slight variant of the ocd_CI algorithm

While our experience is that ocd_CI performs very well empirically, in our theoretical analysis
it turns out to be easier to study a slight variant of this algorithm, denoted ocd_CI′. There are
two main differences between the algorithms. First, in ocd_CI, the base changepoint detection
procedure is ocd, while in ocd_CI′, we use the ocd′ procedure (Algorithm 2.2) instead. This
latter algorithm is designed to avoid difficulties caused by adversarial pre-change observations
that may lead to lengthy response delays for the ocd procedure. In particular, for each j ∈ [p]

and b ∈ B, instead of using the final tjn,b observations at time n to construct test statistics
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Algorithm 3.1: Pseudo-code for the confidence interval construction algorithm
ocd_CI

Input: X1, X2, . . . ∈ Rp observed sequentially, β > 0, a ≥ 0, T diag, T off > 0,
d1, d2 > 0

Set: bmin = β√
2⌊log2(2p)⌋ log2(2p)

, B0 = {±bmin},

B =
{
±2ℓ/2bmin : ℓ = 1, . . . , ⌊log2(2p)⌋

}
, n = 0, Ab = 0 ∈ Rp×p and tb = 0 ∈ Rp

for all b ∈ B ∪ B0
repeat

n← n+ 1
observe new data vector Xn

for (j, b) ∈ [p]× (B ∪ B0) do
tjb ← tjb + 1

A·,j
b ← A·,j

b +Xn

if bAj,jb − b
2tjb/2 ≤ 0 then

tjb ← 0 and A·,j
b ← 0

E·,j
b ← A·,j

b /
(
tjb ∨ 1

)1/2
Qjb ←

∑
j′∈[p]\{j}(E

j′,j
b )21{|Ej′,j

b |≥a}

Sdiag ← max(j,b)∈[p]×(B∪B0)

(
bAj,jb − b

2tjb/2
)

Soff ← max(j,b)∈[p]×BQ
j
b

until Sdiag ≥ T diag or Soff ≥ T off ;
(ĵ, b̂)← argmax(j,b)∈[p]×BQ

j
b

Ŝ ←
{
j ∈ [p] \ {ĵ} :

∣∣Ej,ĵ
b̂

∣∣− bmin(t
ĵ

b̂
)1/2 ≥ d1

}
for j ∈ Ŝ do

b̃j ← sgn
(
Ej,ĵ
b̂

)
max

{
b ∈ (B ∪ B0) ∩ (0,∞) :

∣∣Ej,ĵ
b̂

∣∣− b(tĵ
b̂
)1/2 ≥ d1

}
Output: Confidence interval C =

[
max

{
n−minj∈Ŝ

{
tj
b̃j
+ d2

(b̃j)2

}
, 0
}
, n
]
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based on A·,j
n,b, the ocd′ procedure aggregates over a reduced number τ jn,b of observations to

obtain test statistics based on Λ·,j
n,b, where τ jn,b is constructed in an online manner to lie in

the interval [tjn,b/2, 3t
j
n,b/4] for tjn,b ≥ 2. Even though the reduced tail lengths may lead to a

slight deterioration in empirical performance, provided no change has been declared by time
z, they guarantee that from a later time of the form z + O(b−2), the last τ jn,b observations
consist entirely of post-change data.

Second, in ocd_CI′, we allow the practitioner to observe a further ℓ observations after the
time of changepoint declaration, before constructing the confidence interval. The additional
observations are used to determine the anchor coordinate ĵ and scale b̂, as well as the
estimated support Ŝ and the estimated scale b̃j for each j ∈ Ŝ. Thus, the extra sampling
is used to guard against an unusually early changepoint declaration that leaves very few
post-change observations for inference. Nevertheless, we will see in Theorem 3.1 below that
the ocd_CI′ confidence interval has guaranteed nominal coverage even with ℓ = 0, so that
additional observations are only used to control the length of the interval. In fact, even for this
latter aspect, the numerical evidence presented in Section 3.4 indicates that ℓ = 0 provides
confidence intervals of reasonable length in practice. Similarly, Theorem 3.3 ensures that with
high probability, our support estimate Ŝ contains no noise coordinates (i.e. has false positive
control) even with ℓ = 0, so that the extra sampling is only used to provide false negative
control. Pseudo-code for the ocd_CI′ algorithm is given in Algorithm 3.2; its computational
complexity per new observation, and storage requirements, remain O

(
p2 log(ep)

)
.

3.3 Theoretical analysis

Throughout this section, we will assume that the sequential observations X1, X2, . . . are
independent, and that there exist z ∈ N0 and θ = (θ1, . . . , θp)⊤ ̸= 0 for which X1, . . . , Xz ∼
Np(0, Ip) and Xz+1, Xz+2, . . . ∼ Np(θ, Ip). We let ϑ := ∥θ∥2, and write Pz,θ for proba-
bilities computed under this model, though in places we omit the subscripts for brevity.
Recall from Section 2.3 that the effective sparsity of θ, denoted s(θ), is the smallest
s ∈

{
20, 21, . . . , 2⌊log2(p)⌋

}
such that the corresponding effective support S(θ) :=

{
j ∈ [p] :

|θj | ≥ ∥θ∥2/
√
s log2(2p)

}
has cardinality at least s(θ). Thus, the sum of squares of coordi-

nates in the effective support of θ has the same order of magnitude as ∥θ∥22, up to logarithmic
factors.

3.3.1 Coverage probability and length of the confidence interval

The following theorem shows that the confidence interval constructed in the ocd_CI′ algorithm
has the desired coverage level.

Theorem 3.1. Let p ≥ 2. Fix α ∈ (0, 1) and γ ≥ 1 and assume that z ≤ 2αγ. Then
there exist universal constants C1, C2 > 0, such that with inputs (Xt)t∈N, 0 < β ≤ ϑ,
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Algorithm 3.2: Pseudo-code for the ocd_CI′ algorithm, a slight variant of ocd_CI
Input: X1, X2 . . . ∈ Rp observed sequentially, β > 0, a ≥ 0, T diag, T off > 0, d1, d2 > 0

and ℓ ∈ N0

Set: bmin = β√
2⌊log2(2p)⌋ log2(2p)

, B0 = {±bmin},

B =
{
±2ℓ/2bmin : ℓ = 1, . . . , ⌊log2(2p)⌋

}
, n = 0, Ab = Λb = Λ̃b = 0 ∈ Rp×p and

tb = τb = τ̃b = 0 ∈ Rp for all b ∈ B ∪ B0
repeat

n← n+ 1
observe new data vector Xn

for (j, b) ∈ [p]× (B ∪ B0) do
tjb ← tjb + 1 and A·,j

b ← A·,j
b +Xn

set δ = 0 if tjb is a power of 2 and δ = 1 otherwise.
τ jb ← τ jb δ + τ̃ jb (1− δ) + 1 and Λ·,j

b ← Λ·,j
b δ + Λ̃·,j

b (1− δ) +Xn

τ̃ jb ← (τ̃ jb + 1)δ and Λ̃·,j
b ← (Λ̃·,j

b +Xn)δ.

if bAj,jb − b
2tjb/2 ≤ 0 then

tjb ← τ jb ← τ̃ jb ← 0

A·,j
b ← Λ·,j

b ← Λ̃·,j
b ← 0

E·,j
b ← Λ·,j

b /(τ
j
b ∨ 1)1/2

Qjb ←
∑

j′∈[p]\{j}(E
j′,j
b )21{|Ej′,j

b |≥a}

Sdiag ← max(j,b)∈[p]×(B∪B0)

(
bAj,jb − b

2tjb/2
)

Soff ← max(j,b)∈[p]×BQ
j
b

until Sdiag ≥ T diag or Soff ≥ T off ;
Observe ℓ new data vectors Xn+1, . . . , Xn+ℓ

Set Ξj
′,j
b ← Λj′,j

b +
∑n+ℓ

i=n+1X
j′
i√

(τ jb+ℓ)∨1
for j′, j ∈ [p], b ∈ B ∪ B0

Compute Q̃jb ←
∑

j′∈[p]\{j}(Ξ
j′,j
b )21{|Ξj′,j

b |≥a} for j ∈ [p], b ∈ B

(ĵ, b̂)← argmaxj∈[p],b∈B Q̃
j
b

Ŝ ←
{
j ∈ [p] \ {ĵ} : |Ξj,ĵ

b̂
| − bmin(τ

ĵ

b̂
+ ℓ)1/2 ≥ d1

}
for j ∈ Ŝ do

b̃j ← sgn(Ξj,ĵ
b̂
)max

{
b ∈ (B ∪ B0) ∩ (0,∞) : |Ξj,ĵ

b̂
| − b(τ ĵ

b̂
+ ℓ)1/2 ≥ d1

}
Output: Confidence interval C =

[
max

{
n−minj∈Ŝ

{
tj
b̃j
+ d2

(b̃j)2

}
, 0
}
, n
]
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a = C1

√
log{pγ(β−2 ∨ 1)α−1}, T diag = log{16pγ log2(4p)}, T off = 8 log{16pγ log2(2p)},

ℓ ≥ 0, d1 = C2a and d2 = 4d21 in Algorithm 3.2, the output confidence interval C satisfies

Pz,θ(z ∈ C) ≥ 1− α.

As mentioned in Section 3.2.1, our coverage guarantee in Theorem 3.1 holds even with
ℓ = 0, i.e. with no additional sampling. The condition z ≤ 2αγ ensures that the probability
of a false alarm is at most α/2, so that Pz,θ(N ≤ z) ≤ α/2.

We now provide a guarantee on the length of the ocd_CI′ confidence interval.

Theorem 3.2. Assume that θ has an effective sparsity of s := s(θ) ≥ 2. Fix α ∈ (0, 1) and γ ≥
1, and assume that z ≤ 2αγ. Then there exist universal constants C1, C2, C3, C4 > 0 such that,
with inputs (Xt)t∈N, 0 < β ≤ ϑ, a = C1

√
log{pγ(β−2 ∨ 1)α−1}, T diag = log{16pγ log2(4p)},

T off = 8 log{16pγ log2(2p)}, d1 = C2a, d2 = 4d21 and ℓ ≥ C3

(a2s log2(2p)
β2 +1

)
in Algorithm 3.2,

the length L of the output confidence interval C satisfies

Pz,θ
{
L > C4

(
s log2(2p) log{pγ(β−2 ∨ 1)α−1}

β2
+ 1

)}
≤ α.

The main conclusion of Theorem 3.2 is that, with high probability, the length of the
confidence interval is of the same order, up to a logarithmic factor, as the average detection
delay guarantee for the ocd′ procedure (Theorem 2.4). Note that the choices of inputs in
Theorem 3.2 are identical to those in Theorem 3.1, except that we now ask for some additional
observations after the changepoint declaration, the number of which is of the same order of
magnitude as the length of the interval.

3.3.2 Support recovery

Recall the definition of S(θ) from the beginning of this section, and denote Sβ(θ) :=
{
j ∈ [p] :

|θj | ≥ bmin

}
, where bmin, defined in Algorithm 3.2, is the smallest positive scale in B ∪B0, We

will suppress the dependence on θ of both these quantities in this subsection. Theorem 3.3
below provides a support recovery guarantee for Ŝ, defined in Algorithm 3.2. Since neither Ŝ
nor the anchor coordinate ĵ defined in the algorithm depend on d2, we omit its specification;
the choices of other tuning parameters mimic those in Theorems 3.1 and 3.2.

Theorem 3.3. Assume the conditions of Theorem 3.1.

(a) There exist universal constants C1, C2 > 0, such that with inputs (Xt)t∈N, 0 < β ≤ ϑ,
a = C1

√
log{pγ(β−2 ∨ 1)α−1}, T diag = log{16pγ log2(4p)}, T off = 8 log{16pγ log2(2p)},

ℓ ≥ 0 and d1 = C2a in Algorithm 3.2, we have

Pz,θ(Ŝ ⊆ Sβ) ≥ 1− α.



78 Inference in high-dimensional online changepoint detection

(b) Assume further that θ has effective sparsity s := s(θ) ≥ 2. There exist universal constants
C1, C2, C3 > 0 such that, with inputs (Xt)t∈N, 0 < β ≤ ϑ, a = C1

√
log{pγ(β−2 ∨ 1)α−1},

T diag = log{16pγ log2(4p)}, T off = 8 log{16pγ log2(2p)}, d1 = C2a and ℓ ≥ C3

(a2s log2(2p)
β2 +1

)
in Algorithm 3.2, we have

Pz,θ(Ŝ ∪ {ĵ} ⊇ S) ≥ 1− α.

Note that S ⊆ Sβ ⊆ {j ∈ [p] : θj ̸= 0}. Thus, part (a) of the theorem reveals that with
high probability, our support estimate Ŝ does not contain any noise coordinates. Part (b)
offers a complementary guarantee on the inclusion of all “big” signal coordinates, provided we
augment our support estimate with the anchor coordinate ĵ. See also the further discussion
of this result following Proposition 3.4 below.

We now turn our attention to the optimality of our support recovery algorithm, by
establishing a complementary minimax lower bound on the performance of any support
estimator. To this end, recall that for any given θ ∈ Rp and z ∈ N ∪ {0}, we write Pz,θ for a
probability measure under which (Xn)n∈N are independent with Xn ∼ Np(θ1{n>z}, Ip). We
further denote by P(n0)

z,θ the restriction of Pz,θ to the filtration Fn0 := σ(X1, . . . , Xn0). For
r > 0 and m ∈ [p] ∪ {0}, write

Θr,m :=
{
θ ∈ Rp : |{j ∈ [p] : |θj | ≤ 1/(8

√
r)}| ≥ m

}
.

Define T to be the set of stopping times with respect to the natural filtration (Fn)n∈N, and
set

Tr,m :=

{
N ∈ T : sup

z∈N∪{0},θ∈Θr,m

Pz,θ(N > z + r) ≤ 1

4

}
.

Write 2[p] for the power set of [p], equipped with the symmetric difference metric d : (A,B) 7→
|(A \B) ∪ (B \A)|. For any stopping time N , denote

JN := {ψ : (Rp)∞ → 2[p] : ψ is FN -measurable},

where we recall that ψ is said to be FN -measurable if for any A ∈ 2[p] and n ∈ N, we have
ψ−1(A) ∩ {N = n} is Fn-measurable.

Proposition 3.4. For r > 0 and m ≥ 15, we have

inf
N∈Tr,m

inf
ψ∈JN

sup
z∈N∪{0},θ∈Θr,m

Ez,θ d
(
ψ(X1, X2, . . .), supp(θ)

)
≥ m

32
.

Proposition 3.4 can be interpreted as an optimality guarantee for the support recovery
property of the ocd_CI′ algorithm presented in Theorem 3.3(b). To see this, recall from
the definition of S and Theorem 3.3(b) that with high probability, the ocd_CI′ algorithm
with inputs as given in that result selects all signal coordinates whose magnitude exceeds
ϑ/s1/2, up to logarithmic factors. Focusing on the case β = ϑ and where s/ϑ2 bounded
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away from zero for simplicity of discussion, Proposition 3.7 also reveals that this version of
the ocd_CI′ algorithm belongs to Tr,m with r of order s/ϑ2, up to logarithmic factors, and
m = |{j : |θj | ≤ 1/(8

√
r)}|. Proposition 3.4 considers any support estimation algorithm

obtained from a stopping time belonging to the same class, and we note that such a competing
procedure is even allowed to store all data up to this stopping time, in contrast to our online
algorithm. The result shows that any such support estimation algorithm makes on average
a non-vanishing fraction of errors in distinguishing between noise coordinates and signals
that are below the level ϑ/s1/2, again up to logarithmic factors. In other words, with high
probability, the ocd_CI′ algorithm selects all signals that are strong enough (up to logarithmic
factors) to be reliably detected, while at the same time including no noise coordinates (see
Theorem 3.3(a)).

3.4 Numerical studies

In this section, we study the empirical performance of the ocd_CI algorithm. Recall that in
ocd_CI, the off-diagonal statistics Qjb are computed using tail partial sums of length tjb and
that we do not have any extra sampling beyond the time of declaration that a change has
occurred.

3.4.1 Tuning parameters

Recall that in ocd_CI, the off-diagonal statistics Qjb are computed using tail partial sums
of length tjb and that we do not have any extra sampling beyond the time of declaration
that a change has occurred (i.e. ℓ = 0 as in ocd_CI′). In Section 2.4, we found that the
theoretical choice of thresholds T diag and T off for the ocd procedure were a little conservative,
and therefore recommended determining these thresholds via Monte Carlo simulation; we
replicate the method for choosing these thresholds described in Section 2.4.1. Likewise, as in
Section 2.4, we take a =

√
2 log p in our simulations.

This leaves us with the choice of tuning parameters d1 and d2. As suggested by Theorems 3.1
and 3.2, we take d2 = 4d21. Finally, again as suggested by our theory, we take d1 to be of the
form d1 = c

√
log(p/α), and then tune the parameter c > 0 through Monte Carlo simulation,

as we now describe. We considered the parameter settings p ∈ {100, 500}, s ∈ {2, ⌊√p⌋, p},
ϑ ∈ {2, 1, 1/2}, α = 0.05, β ∈ {2ϑ, ϑ, ϑ/2}, γ = 30000 and z = 500. Then, with θ

generated as ϑU , where U is uniformly distributed on the union of all s-sparse unit spheres
in Rp (independent of our data), we studied the coverage probabilities, estimated over 2000
repetitions as c varies, of the ocd_CI confidence interval for data generated according to the
Gaussian model defined at the beginning of Section 3.3. Figure 3.1 displays a subset of the
results (the omitted curves were qualitatively similar).
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A large c results in a smaller support estimate set Ŝ due to the threshold d1 being higher;
the output confidence interval is then longer due to both Ŝ being smaller and d2 being larger.
From the left panel of Figure 3.1, we can see that, for a given c, the coverage probability
decreases as the signal becomes denser. One reason for this is that we are using the ‘sparse’
version of the ocd algorithm. Another reason is that when the signal is denser and more
spread out, more coordinates will enter Ŝ. This could lead to a more liberal confidence
interval, as we are taking the minimum over all coorindates in Ŝ in the final construction.
The right panel indicates that an overspecification of β will likely yield a shorter and more
liberal confidence interval, while an underestimation will result in a slightly more conservative
one (see also below in Section 3.4.2). Therefore, a larger choice of c is needed to guarantee the
nominal coverage in the case of a dense change or an overspecification of β. We recommend
c = 0.5 as a safe choice across a wide range of data generating mechanisms, and we used this
value of c throughout our confidence interval simulations.

The previous three paragraphs, in combination with Algorithm 3.1, provide the practical
implementation of the ocd_CI algorithm that we use in our numerical studies and that we
recommend for practitioners. The only quantity that remains for the practitioner to input
(other than the data) is β, which represents a lower bound on the Euclidean norm of the vector
of mean change. Fortunately, this description makes β easily interpretable by practitioners,
and a sensible choice should typically be possible using domain knowledge.

0.
0

0.0

0.
0

0.0

0.
2

0.2

0.
2

0.2

0.
4

0.4

0.
4

0.4

0.
6

0.6

0.
6

0.6

0.
8

0.8

0.
8

0.8

1.
0

1.
0

C
ov
er
ag
e
p
ro
b
ab

il
it
y

C
ov
er
ag
e
p
ro
b
ab

il
it
y

Tuning parameter cTuning parameter c

p = 100
p = 500
s = 2
s =

√
p

s = p

ϑ = 2
ϑ = 1
ϑ = 1/2
β = ϑ
β = 4ϑ
β = ϑ/4

ϑ = β = 1, α = 0.05 p = 100, s = 10, α = 0.05

Fig. 3.1 Coverage probabilities of the ocd_CI confidence interval as the parameter c, involved
in the choice of tuning parameter d1, varies.
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3.4.2 Coverage probability and interval length

In Table 3.1, we present the detection delay of the ocd procedure, as well as the coverage
probabilities and average confidence interval lengths of the ocd_CI procedure, all estimated
over 2000 repetitions, with the same set of parameter choices and data generating mechanism
as in Section 3.4.1. From this table, we see that the coverage probabilities are at least at the
nominal level (up to Monte Carlo error) across all settings considered. Underspecification
of β means that the grid of scales that can be chosen for indices in Ŝ is shifted downwards,
and therefore increases the probability that b̃j will significantly underestimate θj for j ∈ Ŝ.
In turn, this leads to a slight conservativeness for the coverage probability (and corresponding
increased average confidence interval length). On the other hand, overspecification of β yields
a shorter interval on average, though these were nevertheless able to retain the nominal
coverage in all cases considered.

Another interesting feature of Table 3.1 is to compare the average confidence interval
lengths with the corresponding average detection delays. Theorems 3.2 and 2.4 indicate that
both of these quantities are of order (s/β2) ∨ 1, up to polylogarithmic factors in p and γ, but
of course whenever the confidence interval includes the changepoint, its length must be at least
as long as the detection delay. Nevertheless, in most settings, it is only 2 to 3 times longer on
average, and in all cases considered was less than 7 times longer on average. Moreover, we
can also observe that the confidence interval length increases with s and decreases with β, as
anticipated by our theory.

From a practical perspective, it is also important to assess the robustness of the ocd_CI

methodology to departures from the class of data generating mechanisms that underpins
our theory in Section 3.3. In particular, in the remainder of this subsection, we seek to
assess the impact of both spatial and temporal dependence on the performance of the ocd_CI

algorithm, while in our analysis of S&P 500 data in Section 3.4.4, we also investigate the
effect of heavy tails. Taking spatial dependence first, we consider a setting where the cross-
sectional covariance matrix Σ = (Σjk)j,k∈[p] for each observation is Toeplitz with parameter
ρ ∈ {0.5, 0.75}; in other words, Σjk = ρ|j−k|. Table 3.2 presents the results of applying
the ocd_CI methodology in an unmodified way to this new data generating mechanism.
Reassuringly, the coverage of the ocd_CI confidence intervals remains perfectly satisfactory in
all settings considered, and moreover, the lengths of the confidence intervals are very similar
to those in Table 3.1 where we have an identity cross-sectional covariance matrix.

Regarding temporal dependence, we consider an autoregressive AR(1) model for the
sequentially-observed data with coordinate-dependent autoregressive parameters, so that
Xj

1 = ϵj1 and

Xj
t = ρj ·Xj

t−1 +
√
1− ρ2j · ϵ

j
t

for t = 2, . . . , n, with independent standard normal random variables (ϵjt )t∈[n],j∈[p]. As with
all (offline or online) changepoint procedures, the presence of temporal correlations with p new
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p s ϑ β Detection Delay Coverage (%) CI Length
100 2 2 4 9.8(0.1) 96.2(0.4) 20.1(0.7)
100 2 2 2 12.6(0.1) 97.0(0.4) 33.7(0.7)
100 2 2 1 14.1(0.1) 97.9(0.3) 80.8(1.0)
100 2 1 2 34.2(0.3) 95.8(0.4) 66.1(1.0)
100 2 1 1 44.2(0.3) 97.5(0.4) 122.0(1.4)
100 2 1 0.5 52.0(0.4) 97.4(0.4) 309.1(2.0)
100 10 2 4 14.7(0.1) 96.0(0.4) 32.5(0.8)
100 10 2 2 15.7(0.1) 97.4(0.4) 38.4(0.8)
100 10 2 1 15.9(0.1) 97.0(0.4) 80.2(1.1)
100 10 1 2 52.6(0.5) 96.2(0.4) 114.0(1.5)
100 10 1 1 56.9(0.4) 97.1(0.4) 142.5(1.8)
100 10 1 0.5 60.2(0.4) 98.2(0.3) 301.1(1.6)
100 100 2 4 27.2(0.2) 96.1(0.4) 77.6(0.9)
100 100 2 2 27.7(0.2) 96.0(0.4) 81.8(1.0)
100 100 2 1 28.2(0.2) 97.5(0.3) 99.4(1.3)
100 100 1 2 100.7(0.8) 94.7(0.5) 292.8(3.5)
100 100 1 1 100.5(0.9) 96.3(0.4) 296.0(3.4)
100 100 1 0.5 103.2(0.8) 97.3(0.4) 365.9(2.8)
500 2 2 4 11.3(0.1) 97.2(0.4) 23.1(0.7)
500 2 2 2 15.8(0.1) 97.7(0.3) 45.2(0.9)
500 2 2 1 17.7(0.1) 97.5(0.4) 117.3(1.0)
500 2 1 2 41.5(0.3) 97.3(0.4) 81.8(1.2)
500 2 1 1 55.0(0.4) 96.8(0.4) 168.9(1.5)
500 2 1 0.5 64.6(0.5) 98.1(0.3) 445.0(1.7)
500 22 2 4 23.6(0.2) 96.3(0.4) 55.4(1.0)
500 22 2 2 25.0(0.2) 97.0(0.4) 60.3(0.8)
500 22 2 1 25.5(0.2) 98.1(0.3) 119.7(0.8)
500 22 1 2 88.1(0.7) 97.0(0.4) 203.5(2.1)
500 22 1 1 91.9(0.6) 97.8(0.3) 229.7(2.2)
500 22 1 0.5 94.9(0.6) 98.3(0.3) 462.8(1.4)
500 500 2 4 79.8(0.6) 95.0(0.5) 238.9(2.7)
500 500 2 2 80.3(0.6) 95.8(0.4) 245.7(2.6)
500 500 2 1 80.9(0.6) 97.5(0.4) 250.2(2.5)
500 500 1 2 290.5(2.3) 94.5(0.5) 819.7(7.9)
500 500 1 1 291.4(2.3) 95.2(0.5) 831.1(7.5)
500 500 1 0.5 297.3(2.3) 98.1(0.3) 875.0(6.7)

Table 3.1 Estimated coverage, average length of the ocd_CI confidence interval and average
detection delay over 2000 repetitions, with standard errors in brackets. Other parameters:
γ = 30000, z = 1000, α = 0.05, a =

√
2 log p, c = 0.5, d1 = c

√
log(p/α), d2 = 4d21.



3.4 Numerical studies 83

ρ s ϑ Detection Delay Coverage (%) CI Length
0.5 2 2 13.9(0.1) 98.5(0.3) 35.5(1.0)
0.5 2 1 49.1(0.3) 99.0(0.2) 125.1(1.6)
0.5 2 0.5 172.5(1.0) 99.5(0.2) 447.0(2.8)
0.5 10 2 21.9(0.1) 98.7(0.3) 42.0(0.9)
0.5 10 1 76.1(0.5) 98.8(0.2) 154.2(1.5)
0.5 10 0.5 266.7(1.8) 99.0(0.2) 566.9(3.9)
0.5 100 2 52.1(0.3) 98.3(0.3) 106.8(0.9)
0.5 100 1 187.7(1.3) 98.4(0.3) 399.5(3.3)
0.5 100 0.5 655.3(5.0) 98.5(0.3) 1366.2(10.1)
0.75 2 2 13.9(0.1) 96.9(0.4) 51.1(2.6)
0.75 2 1 47.9(0.3) 96.8(0.4) 146.0(3.3)
0.75 2 0.5 171.5(1.1) 97.7(0.3) 463.8(4.2)
0.75 10 2 21.8(0.2) 96.4(0.4) 48.6(1.7)
0.75 10 1 75.3(0.5) 96.7(0.4) 165.0(2.7)
0.75 10 0.5 266.3(1.9) 96.0(0.4) 558.9(4.5)
0.75 100 2 50.9(0.3) 96.8(0.4) 106.8(1.2)
0.75 100 1 184.8(1.4) 95.6(0.5) 401.8(3.8)
0.75 100 0.5 647.3(5.4) 94.6(0.5) 1312.3(11.2)

Table 3.2 Spatial dependence. Estimated coverage and average length of the ocd_CI confidence
interval and average detection delay over 2000 repetitions, with standard errors in brackets,
under a Toeplitz cross-sectional covariance matrix Σ with entries Σjk = ρ|j−k| for j, k ∈ [p].
Other parameters: p = 100, β = ϑ, γ = 30000, z = 1000, α = 0.05, a =

√
2 log p, c = 0.5,

d1 = c
√

log(p/α), d2 = 4d21.
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parameters in the model significantly increases the difficulty of the challenge. Therefore, in
order to learn the autoregressive parameters, we also allow the algorithm access to a historical
offline burn-in data set of length 1000 generated under the null. This was used initially to
construct maximum likelihood estimates ρ̂j of ρj , for j ∈ [p]. Next, we used the burn-in data
again to compute estimates σ̂j of the standard deviation of the auto-regressive residuals in the
jth coordinate. In applying the ocd_CI algorithm subsequently, we pre-processed each new
observation by replacing Xj

t with (Xj
t − ρ̂jX

j
t−1)/σ̂j for j = 2, 3, . . .. In the simulation results

reported in Table 3.3 below, we generated ρj
iid∼ U [−ρmax, ρmax] for j ∈ [p], independent of all

other sources of randomness, with ρmax ∈ {0.5, 0.75}. Again, we find that all of the coverage
probabilities are satisfactory, and the confidence interval lengths in fact decrease slightly as
the extent of the dependence increases (due to the declaration time typically being a little
shorter).

ρmax s ϑ Detection Delay Coverage (%) CI Length
0.5 2 2 11.5(0.1) 95.8(0.4) 34.4(1.1)
0.5 2 1 41.5(0.3) 96.5(0.4) 118.2(1.7)
0.5 2 0.5 149.9(1.0) 98.5(0.3) 422.2(2.8)
0.5 10 2 14.2(0.1) 95.7(0.5) 38.3(1.1)
0.5 10 1 50.6(0.4) 95.7(0.5) 130.4(1.6)
0.5 10 0.5 192.2(1.6) 96.9(0.4) 480.3(3.7)
0.5 100 2 24.8(0.2) 95.1(0.5) 75.5(1.2)
0.5 100 1 91.8(0.8) 95.8(0.4) 271.0(3.2)
0.5 100 0.5 346.9(3.0) 96.0(0.4) 939.7(8.8)
0.75 2 2 10.6(0.1) 96.2(0.4) 32.4(1.0)
0.75 2 1 37.1(0.3) 96.3(0.4) 111.4(1.4)
0.75 2 0.5 136.0(1.1) 97.0(0.4) 403.0(2.6)
0.75 10 2 12.2(0.1) 95.0(0.5) 35.1(1.0)
0.75 10 1 45.5(0.4) 96.3(0.4) 121.8(1.6)
0.75 10 0.5 174.6(1.4) 97.8(0.3) 452.4(3.2)
0.75 100 2 21.2(0.2) 96.1(0.4) 64.9(1.1)
0.75 100 1 77.4(0.7) 95.8(0.4) 229.9(2.8)
0.75 100 0.5 293.9(2.6) 96.2(0.4) 820.1(8.1)

Table 3.3 Temporal dependence. Estimated coverage and average length of the ocd_CI
confidence interval and average detection delay over 2000 repetitions, with standard errors
in brackets, under the AR(1) model with autoregressive parameters ρj

iid∼ U [−ρmax, ρmax].
Other parameters: p = 100, β = ϑ, γ = 30000, z = 1000, α = 0.05, a =

√
2 log p, c = 0.5,

d1 = c
√
log(p/α), d2 = 4d21.

Based on our numerical investigations, we make the following recommendations: for spatial
dependence, we advocate applying the ocd_CI methodology in an unmodified fashion, and
(at least when the dependence across coordinates is not too severe), our experience is that the
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performance of the algorithm is relatively unaffected. Temporal dependence, on the other
hand, presents very significant challenges for changepoint algorithms, and careful modelling of
this dependence is recommended in order to facilitate the construction of appropriate residuals
for which the main effect of the dependence has been removed. Where an appropriate model
for the temporal dependence structure is available, we have found that the ocd_CI algorithm
again performs well.

3.4.3 Support recovery

We now turn our attention to the empirical support recovery properties of the quantity Ŝ (in
combination with the anchor coordinate ĵ) computed in the ocd_CI algorithm. In Table 3.4,
we present the probabilities, estimated over 500 repetitions, that Ŝ ⊆ Sβ and that Ŝ ∪{ĵ} ⊇ S
for p = 100, s ∈ {5, 50}, ϑ ∈ {1, 2}, and for three different signal shapes: in the uniform,
inverse square root and harmonic cases, we took θ ∝ (1{j∈[s]})j∈[p], θ ∝ (j−1/2

1{j∈[s]})j∈[p]

and θ ∝ (j−1
1{j∈[s]})j∈[p] respectively. As inputs to the algorithm, we set a =

√
2 log p,

α = 0.05, d1 =
√

2 log(p/α), β = ϑ, and, motivated by Theorem 3.3, took an additional
ℓ = ⌈a2sβ−2 log2(2p)⌉ post-declaration observations in constructing the support estimates.
The results reported in Table 3.4 provide empirical confirmation of the support recovery
properties claimed in Theorem 3.3.

s ϑ Signal Shape Ŝ ⊆ Sβ (%) Ŝ ∪ {ĵ} ⊇ S (%)
5 2 uniform 99.8(0.2) 97.6(0.7)
5 1 uniform 100.0(0.0) 97.6(0.7)
50 2 uniform 100.0(0.0) 95.6(0.9)
50 1 uniform 100.0(0.0) 97.8(0.7)
5 2 inv sqrt 99.6(0.3) 96.6(0.8)
5 1 inv sqrt 100.0(0.0) 98.8(0.5)
50 2 inv sqrt 100.0(0.0) 99.8(0.2)
50 1 inv sqrt 100.0(0.0) 100.0(0.0)
5 2 harmonic 100.0(0.0) 97.6(0.7)
5 1 harmonic 99.6(0.3) 97.8(0.7)
50 2 harmonic 100.0(0.0) 99.4(0.3)
50 1 harmonic 100.0(0.0) 100.0(0.0)

Table 3.4 Estimated support recovery probabilities (with standard errors in brackets). Other
settings: p = 100, a =

√
2 log p, α = 0.05, d1 =

√
2 log(p/α), β = ϑ, and with an additional

ℓ = ⌈a2sβ−2 log2(2p)⌉ post-declaration observations.

Finally in this section, we consider the extent to which the additional observations are
necessary in practice to provide satisfactory support recovery. In the left panel of Figure 3.2,
we plot Receiver Operating Characteristic (ROC) curves to study the estimated support
recovery probabilities with ℓ = 0 (i.e. no additional sampling) as a function of the input
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parameter d1, which can be thought of as controlling the trade-off between P(Ŝ ∪ {ĵ} ⊇ S)
and P(Ŝ ⊆ Sβ). The fact that the triangles in this plot are all to the left of the dotted
vertical line confirms the theoretical guarantee provided in Theorem 3.3(a), which holds with
d1 =

√
2 log(p/α), and even with ℓ = 0); the less conservative choice d1 =

√
2 log p, which

roughly corresponds to an average of one noise coordinate included in Ŝ, allows us to capture
a larger proportion of the signal. From this panel, we also see that additional sampling
is needed to ensure that, with high probability, we recover all of the true signals. This is
unsurprising: for instance, with a uniform signal shape and s = 50, it is very unlikely that
all 50 signal coordinates will have accumulated such similar levels of evidence to appear in
Ŝ ∪ {ĵ} by the time of declaration. The right panel confirms that, with an inverse square root
signal shape, the probability that we capture each signal increases with the signal magnitude,
and that even small signals tend to be selected with higher probability than noise coordinates.
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1− P(Ŝ ⊆ Sβ)

F
re
q
u
en
cy

Coordinate

uniform
inv sqrt
harmonic
s = 5
s = 50

Fig. 3.2 Support recovery properties of ocd_CI. In the left panel, we plot ROC curves for
three different signal shapes and for sparsity levels s ∈ {5, 50}. The triangles and circles
correspond to points on the curves with d1 =

√
2 log(p/α) (with α = 0.05), and d1 =

√
2 log p

respectively. The dotted vertical line corresponds to P(Ŝ ⊆ Sβ) = 1− α. In the right panel,
we plot the proportion of 500 repetitions for which each coordinate belongs to Ŝ ∪ {ĵ} with
d1 =

√
2 log p; here, the s = 20 signals have an inverse square root shape, and are plotted

in red; noise coordinates are plotted in black. Other parameters for both panels: p = 100,
β = ϑ = 2, ℓ = 0, a =

√
2 log p.
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3.4.4 Real data examples

US COVID-19 data

We apply ocd_CI to a dataset of weekly deaths in the United States between January 2017
and June 20202. The data up to 29 June 2019 are treated as our training data. For each
of the 50 states, as well as Washington, D.C. (p = 51), we pre-process the data as follows.
To remove the seasonal effect, we first estimate the ‘seasonal death curve’, i.e. the mean
death numbers for each day of the year, for each state. The seasonal death curve is estimated
by first splitting the weekly death numbers evenly across the seven relevant days, and then
estimating the average number of deaths on each day of the year from these derived daily
death numbers using a Gaussian kernel with a bandwidth of 20 days. As the death numbers
follow an approximate Poisson distribution, we apply a square-root transformation to stabilise
the variance; more precisely, the transformed weekly excess deaths are computed as the
difference of the square roots of the weekly deaths and the predicted weekly deaths from the
seasonal death curve. Finally, we standardise the transformed weekly excess deaths using
the mean and standard deviation of the transformed data over the training period. The
standardised, transformed data are plotted in Figure 3.3 for 12 states. When applying ocd_CI

to these data, we take a =
√
2 log p, T diag = log{16pγ log2(4p)}, T off = 8 log{16pγ log2(2p)},

d1 = 0.5
√

log(p/α) and d2 = 4d21, with α = 0.05, β = 50 and γ = 1000. On the monitoring
data (from 30 June 2019), the ocd_CI algorithm declares a change on the week ending 28
March 2020, and provides a confidence interval from the week ending 21 March 2020 to the
week ending 28 March 2020. This coincides with the beginning of the first wave of COVID-19
deaths in the United States. The algorithm also identifies New York, New Jersey, Connecticut,
Michigan and Louisiana as the estimated support of the change. Interestingly, if we run the
ocd_CI procedure from the beginning of the training data period (while still standardising
as before, due to the lack of available data prior to 2017), it identifies a subtler change on
the week ending 6 January 2018, with a confidence interval of [17 December 2017, 6 January
2018]. This corresponds to a bad influenza season at the end of 20173.

S&P 500 data

We now use ocd_CI to study market movements leading up to the financial crisis of 2007–2008.
We selected the p = 254 stocks that were both in the S&P 500 listing and were traded
throughout the period from 1 January 2006 to 31 December 2007. The historical price data
were downloaded from finance.yahoo.com using the quantmod R package (Ryan et al., 2020);
a similar dataset was studied by Cai and Wang (2021). For each stock, we compute the
daily logarithmic returns from the adjusted closing prices. We use the data from 2006 as the

2Available at: https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm.
3See https://www.cdc.gov/flu/about/season/flu-season-2017-2018.htm

finance.yahoo.com
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://www.cdc.gov/flu/about/season/flu-season-2017-2018.htm


88 Inference in high-dimensional online changepoint detection

 

 

20
17

−
01

−
14

20
17

−
03

−
01

20
17

−
05

−
01

20
17

−
07

−
01

20
17

−
09

−
01

20
17

−
11

−
01

20
18

−
01

−
01

20
18

−
03

−
01

20
18

−
05

−
01

20
18

−
07

−
01

20
18

−
09

−
01

20
18

−
11

−
01

20
19

−
01

−
01

20
19

−
03

−
01

20
19

−
05

−
01

20
19

−
07

−
01

20
19

−
09

−
01

20
19

−
11

−
01

20
20

−
01

−
01

20
20

−
03

−
15

20
20

−
03

−
28

20
20

−
05

−
01

20
20

−
06

−
27

FL

NC

TX

WY

CA

WA

DC

LA

MI

CT

NY

NJ

Fig. 3.3 Standardised, transformed weekly excess death data from 12 states (including
Washington, D.C.). The monitoring period starts from 30 June 2019 (dashed line). The data
from the states in the support estimate are shown in red. The confidence interval [8 March
2020, 28 March 2020] is shown in the light blue shaded region.

training data and standardise the entire data according to the mean and standard deviation
over the training period.

A potential difficulty of applying the ocd_CI methodology directly to the raw data is the
heavy tails that are a characteristic feature of financial return data. Nevertheless, simple
transformations such as clipping (or trimming) have recently be shown to be extremely
effective transformations for such data — see for instance Minsker (2018), Ke et al. (2019) and
Zhu and Zhou (2021), as well as our discussion of robustness below. In our initial analysis,
we clip the standardized data at ±Φ−1(0.999) as a pre-processing transformation.

When applying the ocd_CI procedure to this dataset, we used the same input parameters
as in the previous example. So as to be able to use ocd_CI repeatedly to identify multiple
changes, we also set a cool-down period of 10 trading days (i.e. the monitoring resets and
restarts 10 trading days after a change is declared). This allows the market to recover from any
loss (or gain) from the previous change so that the same market movement is not identified
as more than one changepoint. The first four changes were declared on 27 February 2007, 24
May 2007, 24 July 2007 and 8 August 2007, with corresponding confidence intervals shown in
Figure 3.4. This figure also depicts the relative sector impact of each change by showing the
percentage of stocks in each sector (according to the Global Industry Classification Standard4)
that belongs to the estimated support of a changepoint. In particular, the first and last
identified changepoints are primarily associated with changes in Real Estate stocks; these
correspond to an HSBC announcement indicating loan losses on subprime mortgages in
February 2007, and American Home Mortgage Investment Corporation filing for bankruptcy
in August 2007 respectively (Hausman and Johnston, 2014).

4See https://www.msci.com/our-solutions/indexes/gics

https://www.msci.com/our-solutions/indexes/gics
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Fig. 3.4 Heatmap of sector impact of the four changepoints in the S&P 500 data identified
by ocd_CI, measured as a proportion of the stocks in a sector that appear in the support
estimate of the changepoint. The confidence intervals for each of the changepoints are given
on the left.

To assess the robustness of our conclusions to our pre-processing transformation, we
consider alternative clipping levels as well as a different normal transformation technique. More
specifically, in addition to clipping the standardized data at ±Φ−1(0.999), we also consider
clipping at ±Φ−1(1− δ) with δ ∈ {0.0005, 0.002, 0.004, 0.008}. The alternative transformation
alluded to above involves applying the following two steps coordinatewise to our data. Given
training data X1, . . . , Xn with corresponding order statistics X(1) ≤ . . . ≤ X(n), we first define
the piecewise linear function

F̂ (x) :=


i

n+1 +
x−X(i)

(n+1)(X(i+1)−X(i))
if x ∈ [X(i), X(i+1)) with i ∈ [n− 1]

1/(n+ 1) if x < X(1)

n/(n+ 1) if x ≥ X(n).

On our test data Xn+1, . . . , Xn+m, we then compute Zi := Φ−1
(
F̂ (Xn+i)

)
for i ∈ [m]. In

Figure 3.5, we present the results of applying these different methods to our S&P 500 data.
All of the methods declare four changepoints, and these are located around the same times.
Small values of δ are less robust to heavy tails, but have greater power to detect changes,
so declaration times tend to be slightly earlier, and the corresponding confidence intervals
are somewhat shorter. Nevertheless, the figure is reassuring regarding the robustness of our
pre-processing transformation.

3.5 Proofs of main results

Proof of Theorem 3.1. Fix n > z, j ∈ [p], b ∈ B and j′ ∈ [p] \ {j}. We assume, without loss
of generality, that θj′ ≥ 0. The case θj′ < 0 can be analysed similarly. Recall that bmin,
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Fig. 3.5 Illustration of the robustness of ocd_CI methodology: the figure shows its application
on the S&P 500 data with different clipping levels and an alternative normal transformation
technique.

defined in Algorithm 3.2, is the smallest positive scale in B ∪ B0, and write bj
′
aux := min

{
b ∈

(B ∪ B0) ∩ (0,∞) : b ≥ θj
′}. Then we have Λj

′,j
n,b +

∑n+ℓ
i=n+1X

j′

i | τ
j
n,b ∼ N

(
θj

′
min{n + ℓ −

z, τ jn,b + ℓ}, τ jn,b + ℓ
)
. Thus, recalling the definition of Ŝ and b̃j′ from Algorithm 3.2, we have

P
(
{j′ ∈ Ŝ} ∩ {b̃j′ /∈ (0, θj

′
)} ∩ {N = n, ĵ = j, b̂ = b}

)
= E

{
P
(
{j′ ∈ Ŝ} ∩ {b̃j′ /∈ (−bmin, b

j′
aux)} ∩ {N = n, ĵ = j, b̂ = b}

∣∣∣ τ jn,b)}
≤ E

{
P
(
Λj

′,j
n,b +

n+ℓ∑
i=n+1

Xj′

i ≥ b
j′
aux(τ

j
n,b + ℓ) + d1

(
τ jn,b + ℓ)1/2

∣∣∣∣ τ jn,b)}

+ E
{
P
(
Λj

′,j
n,b +

n+ℓ∑
i=n+1

Xj′

i ≤ −bmin(τ
j
n,b + ℓ)− d1

(
τ jn,b + ℓ

)1/2 ∣∣∣∣ τ jn,b)}
≤ E

{
Φ̄
(
(bj

′
aux − θj

′
)(τ jn,b + ℓ)1/2 + d1

)}
+ E

{
Φ̄
(
(bmin + θj

′
)(τ jn,b + ℓ)1/2 + d1

)}
≤ 2Φ̄(d1). (3.2)

Moreover, by a similar argument to (3.15) in the proof of Proposition 3.5, for b ∈ (0, θj
′
), we

have

P
(
n− tj

′

n,b − d2/b
2 > z

)
≤ 2Φ̄

(√
d2
b

(θj
′ − b/2)

)
≤ 2Φ̄

(√
d2/2

)
. (3.3)

Combining (3.2) and (3.3), we have

P
(
{j′ ∈ Ŝ} ∩ {n− tj

′

n,b̃j′
− d2/(b̃j

′
)2 > z} ∩ {N = n, ĵ = j, b̂ = b}

)
≤ P

(
{j′ ∈ Ŝ} ∩ {b̃j′ /∈ (0, θj

′
)} ∩ {N = n, ĵ = j, b̂ = b}

)
+

∑
b∈(B∪B0)∩(0,θj)

2Φ̄
(√

d2/2
)

≤ 2Φ̄(d1) + 2 log2(4p)Φ̄
(√

d2/2
)
.
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Now, write

r0 :=

(
24T off

ϑ2
∨ 12(a2 ∨ 8 log 2)s

ϑ2
∨ 128(T diag + log(8/α))s

β2

)
log2(2p) + 2. (3.4)

By a union bound and Proposition 3.7, we have

P
(
N −min

j∈Ŝ

{
tj
N,b̃j

+
d2

(b̃j)2

}
> z

)
≤ P(N > z + r0)

+

z+⌊r0⌋∑
n=z+1

p∑
j=1

∑
b∈B

p∑
j′=1

P
(
{j′ ∈ Ŝ} ∩

{
n− tj

′

n,b̃j′
− d2

(b̃j′)2
> z
}
∩ {N = n, ĵ = j, b̂ = b}

)

≤ exp

{
− β

2(r0 − 1)

48 log2(2p)

}
+ p exp

{
− ϑ2(r0 − 1)

128 log2(2p)

}
+ 4p2 log22(4p)r0

{
Φ̄(d1) + Φ̄

(√
d2/2

)}
.

Therefore, for sufficiently large C1 > 0 and C2 > 0, the choice of d1 and d2 in the statement
of the theorem ensures that

P
(
N −min

j∈Ŝ

{
tj
N,b̃j

+
d2

(b̃j)2

}
> z

)
≤ α/2.

Combining this with the fact that P(N ≤ z) ≤ z/(4γ) ≤ α/2, which follows from Lemma 2.13
when C1 ≥

√
8, we deduce the result.

Proof of Theorem 3.2. Denote ℓ0 := C3

(a2s log2(2p)
β2 + 1

)
. Since the output of Algorithm 3.2

remains unchanged if we replace (Xj
t : t ∈ N) by (−Xj

t : t ∈ N) for any fixed j, we
may assume without loss of generality that θ1 ≥ θ2 ≥ ϑ/

√
s log2(2p). For j ∈ {1, 2},

we denote bj := max{b ∈ B ∪ B0 : b ≤ θj} . Since ϑ ≥ β and s ≤ 2⌊log2(p)⌋, we have
b1 ≥ b2 ≥ β/

√
s log2(2p) ≥

√
2bmin. For C5 > 0, let

r :=
C5a

2s log2(2p)

β2
+ 2, u :=

ℓ0β
2

80s log2(2p)
and δ :=

a

2
√
r + ℓ

.

Now define the following events:

Ω0 := {z < N ≤ z + r}

Ω1 :=
{
tjN,b ≤ N − z + ub−2 for all j ∈ [p] and b ∈ B ∪ B0

}
,

Ω2 :=

{∣∣∣∣Λj′,jN,b +

N+ℓ∑
i=N+1

Xj′

i

∣∣∣∣ < a
√
τ jN,b + ℓ for all b ∈ B ∪ B0, j ∈ [p]

and all j′ ∈ [p] \ {j} with
∣∣θj′∣∣ ≤ δ},

Ω3 :=
{
τ ĵ
N,b̂
≤ N − z + ℓ/20

}
.
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Finally, we denote event
Ω4 := Ω4,1 ∪ Ω4,2,

with

Ω4,1 :=
{
ĵ ̸= 1, 1 ∈ Ŝ, b̃1 ≥ b1/

√
2
}

Ω4,2 :=
{
ĵ = 1, 2 ∈ Ŝ, b̃2 ≥ b2/

√
2
}
.

Henceforth, we will assume without loss of generality that C2 ≥ 1/2. Then, on the event⋂4
k=0Ωk, we have

L = min
j∈Ŝ

{
tj
N,b̃j

+
d2

(b̃j)2

}
∧N ≤ N − z + 2(u+ d2)

(b2)2
≤ r + ℓ0

40
+

2sd2 log2(2p)

β2

≤ C2
1

(
C5 +

C3

40
+ 8C2

2

)(s log2(2p) log{pγ(β−2 ∨ 1)α−1}
β2

+ 1

)
.

Let C4 := C2
1 (C5 +

C3
40 + 8C2

2 ). Then

P

(
L > C4

(
s log2(2p) log{pγ(β−2 ∨ 1)α−1}

β2
+ 1

))
≤ P

( 4⋃
k=0

Ωc
k

)
. (3.5)

By choosing C1 ≥
√
8 and choosing C5 to be a sufficiently large universal constant, we have

r ≥
(
24T off

ϑ2
∨ 12a2s

ϑ2
∨ 24Tdiags

β2

)
log2(2p) + 2, so we may apply Proposition 3.7 and Lemma 2.13

to deduce that

P(Ωc
0) = P(N > z + r) + P(N ≤ z) ≤ 2p exp

{
− β2(r − 1)

128 log2(2p)

}
+

z

4γ

≤ 2p exp

{
−C5C

2
1s log{pγ(β−2 ∨ 1)α−1}

128

}
+

z

4γ
. (3.6)

On Ω0, we have for any j ∈ [p] and b ∈ B ∪ B0 that

tjN,b = sargmax
0≤h≤N

N∑
i=N−h+1

b(Xj
i − b/2) ≤ sargmax

N−z≤h≤N

N∑
i=N−h+1

b(Xj
i − b/2)

= N − z + sargmax
0≤h≤z

z∑
i=z−h+1

b(Xj
i − b/2).

Thus, by Lemma 3.6 (taking µ = −b/2) and a union bound, we have

P(Ω0 ∩ Ωc
1) ≤ 2p log2(4p)e

−u/8 = 2p log2(4p) exp

{
− ℓ0β

2

640s log2(2p)

}
. (3.7)
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Now observe that, for all z < n ≤ z + r, b ∈ B ∪ B0, j ∈ [p] and j′ ∈ [p] \ {j}, we have

Λj
′,j
n,b +

n+ℓ∑
i=n+1

Xj′

i

∣∣∣∣ τ jn.b ∼ N(θj′{ℓ+min
(
τ jn,b, n− z

)}
, τ jn,b + ℓ

)
.

Hence, when
∣∣θj′∣∣ ≤ δ, we have that

P
(∣∣∣∣Λj′,jn,b +

n+ℓ∑
i=n+1

Xj′

i

∣∣∣∣ ≥ a√τ jn,b + ℓ

∣∣∣∣ τ jn.b) ≤ P(|Y1| ≥ a) ≤ 2P(Y1 ≥ a) ≤ e−a
2/8,

where Y1 ∼ N (δ
√
n− z + ℓ, 1), and where the last inequality follows from the relation

a = 2δ
√
r + ℓ. Thus, by a union bound, we have

P(Ω0 ∩ Ωc
2) ≤ 2rp2 log2(4p)e

−a2/8 ≤ 2rp2 log2(4p){pγ(β−2 ∨ 1)α−1}−C2
1/8. (3.8)

By Lemma 2.19, we have tjn,b/2 ≤ τ
j
n,b ≤ t

j
n,b for all n ∈ N0, b ∈ B ∪B0 and j ∈ [p]. Moreover,

when C3 ≥ 80(C5∨2), we have ℓ0 ≥ 80r. Define b∗ := β/
√
s log2(2p) ∈ B, so that u = ℓ0b

2
∗/80.

We thus have for any z < n ≤ z + r, j ∈ [p] and b ∈ B that

P
(
{N = n} ∩ Ω1 ∩ Ω2 ∩

{
Q̃jn,b ≥ Q̃

j
n,b∗

}
∩
{
τ jn,b > n− z + ℓ/20

} ∣∣∣ Xj
1 , X

j
2 , . . .

)
≤ P

( ⋃
j′∈[p]\{j}:
|θj′ |>δ

{
|Ξj

′,j
n,b | ≥ |Ξ

j′,j
n,b∗
|
}
∩ {N = n} ∩ Ω1 ∩ Ω2

∩
{
τ jn,b > n− z + ℓ/20

} ∣∣∣∣∣ Xj
1 , X

j
2 , . . .

)
≤

∑
j′∈[p]\{j}:
|θj′ |>δ

P
({
|Ξj

′,j
n,b | ≥ |Ξ

j′,j
n,b∗
|
}
∩
{
n− z < τ jn,b∗ ≤ n− z + ℓ/80

}
∩
{
τ jn,b > n− z + ℓ/20

} ∣∣∣ Xj
1 , X

j
2 , . . .

)
+

∑
j′∈[p]\{j}:
|θj′ |>δ

P
({
|Ξj

′,j
n,b | ≥ |Ξ

j′,j
n,b∗
|
}
∩
{
τ jn,b∗ ≤ n− z

}
∩
{
τ jn,b > n− z + ℓ/20

} ∣∣∣ Xj
1 , X

j
2 , . . .

)
.

We apply Lemma 3.8(a) to each summand of the first term in the final expression above with

U =
∑z

i=n−τ jn,b∗+1
Xj′

i , V =
∑n−τ jn,b∗

i=n−τ jn,b+1
Xj′

i , Y =
∑n+ℓ

i=z+1X
j′

i , α = θj
′ , φ1 = z − n+ τ jn,b∗ ,

φ2 = z−n+τ jn,b, φ3 = n−z+ℓ and κ = ℓ/80, and then apply Lemma 3.8(b) to each summand

of the second term with U =
∑z

i=n−τ jn,b+1
Xj′

i , Y =
∑n+ℓ

i=n−τ jn,b∗+1
Xj′

i , Z =
∑n−τ jn,b∗

i=z+1 Xj′

i ,

α = θj
′ , φ1 = z − n+ τ jn,b, φ3 = ℓ+ τ jn,b∗ , φ4 = n− z − τ jn,b∗ and κ = ℓ/80. Then we have

P
(
{N = n} ∩ Ω1 ∩ Ω2 ∩

{
Q̃jn,b ≥ Q̃

j
n,b∗

}
∩
{
τ jn,b > n− z + ℓ/20

} ∣∣∣ Xj
1 , X

j
2 , . . .

)
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≤ p exp
(
− ℓδ

2

960

)
= p exp

(
− ℓa2

3840(r + ℓ)

)
.

Observe that Q̃ĵ
n,b̂
≥ Q̃ĵn,b∗ . Thus, by a union bound, we have

P(Ω0 ∩ Ω1 ∩ Ω2 ∩ Ωc
3)

≤
p∑
j=1

∑
b∈B

z+⌊r⌋∑
n=z+1

P
(
{N = n} ∩ Ω1 ∩ Ω2 ∩

{
Q̃jn,b ≥ Q̃

j
n,b∗

}
∩
{
τ jn,b > n− z + ℓ/20

})
≤ 2rp2 log2(2p) exp

(
− ℓa2

3840(r + ℓ)

)
. (3.9)

When C3 ≥ 144C2
2 ∨ 80C5 ∨ 160, we have ℓ0 ≥ 80r and d1 ≤

√
ℓ0β

12
√
s log2(2p)

≤ b1
√
ℓ/12. Thus,

on Ω0 ∩ Ω3, we have
τ ĵ
N,b̂
≤ N − z + ℓ/20 ≤ r + ℓ/20 ≤ ℓ/16.

Hence, for any z < n ≤ z + r, j ∈ [p] \ {1} and b ∈ B, we have

P
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b} ∩ Ωc

4,1

∣∣ Xj
1 , X

j
2 , . . .

)
≤ P

(
{τ jn,b ≤ ℓ/16} ∩

{
Ξ1,j
n,b − b

1
√(

τ jn,b + ℓ
)
/2 < d1

} ∣∣∣∣ Xj
1 , X

j
2 , . . .

)
≤ 1

2
e−d

2
1/2.

Here, in the final bound, we have used the facts that Ξ1,j
n,b | τ

j
n,b ∼ N

(
θ1min{(n+ ℓ− z)(τ jn,b+

ℓ)−1/2, (τ jn,b + ℓ)1/2}, 1
)

and that

θ1min
{
(n+ ℓ− z)(τ jn,b + ℓ)−1/2, (τ jn,b + ℓ)1/2

}
− b1

√(
τ jn,b + ℓ

)
/2

≥ 4θ1
√
ℓ√

17
− b1
√
17ℓ

4
√
2
≥ b1

√
ℓ

6
≥ 2d1,

when τ jn,b ≤ ℓ/16, as well as the standard Gaussian tail bound used at the end of the proof of
Lemma 3.6. By a similar argument, we also have for any z < n ≤ z + r and b ∈ B that

P
(
Ω3 ∩ {N = n, ĵ = 1, b̂ = b} ∩ Ωc

4,2

∣∣ X1
1 , X

1
2 , . . .

)
≤ P

(
{τ1n,b ≤ ℓ/16} ∩

{
Ξ2,1
n,b − b

2
√(

τ1n,b + ℓ
)
/2 < d1

} ∣∣∣ X1
1 , X

1
2 , . . .

)
≤ 1

2
e−d

2
1/2.

Thus, by a union bound, we have

P(Ω0 ∩ Ω3 ∩ Ωc
4) = P(Ω0 ∩ Ω3 ∩ Ωc

4,1 ∩ Ωc
4,2)

≤
p∑
j=2

∑
b∈B

z+⌊r⌋∑
n=z+1

P
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b} ∩ Ωc

4,1

)
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+
∑
b∈B

z+⌊r⌋∑
n=z+1

P
(
Ω3 ∩ {N = n, ĵ = 1, b̂ = b} ∩ Ωc

4,2

)
≤ rp log2(2p)e−d

2
1/2. (3.10)

Hence by substituting (3.6), (3.7), (3.8), (3.9) and (3.10) into (3.5), we conclude that, by
increasing the universal constant C1 > 0 if necessary,

P

(
L > C4

(
s log2(2p) log{pγ(β−2 ∨ 1)α−1}

β2
+ 1

))
≤ 2p{pγ(β−2 ∨ 1)α−1}−C2

1C5s/128 +
z

4γ
+ 2p log2(4p){pγ(β−2 ∨ 1)α−1}−C2

1C3/640

+ 2rp2 log2(4p){pγ(β−2 ∨ 1)α−1}−C2
1/8 + 2rp2 log2(2p){pγ(β−2 ∨ 1)α−1}−C2

1/3888

+ rp log2(2p){pγ(β−2 ∨ 1)α−1}−C2
1C

2
2/2

≤ α,

as required.

Proof of Theorem 3.3. (a) For j′ ∈ Scβ, we have |θj′ | < bmin, so the event {|b̃j′ | ≤ |θj′ |} is
empty. Thus by (3.2), we have, for n > z, j ∈ [p], b ∈ B and j′ ∈ Scβ , that

Pz,θ
(
{j′ ∈ Ŝ} ∩ {N = n, ĵ = j, b̂ = b}

)
≤ 2Φ̄(d1).

Hence, recalling the definition of r0 from (3.4), by Lemma 2.13 applied with C1 ≥
√
8, a

union bound and Proposition 3.7, we have

Pz,θ(Ŝ * Sβ) ≤ Pz,θ(N ≤ z) + Pz,θ(N > z + r0)

+

z+⌊r0⌋∑
n=z+1

p∑
j=1

∑
b∈B

∑
j′∈Sc

β

Pz,θ
(
{j′ ∈ Ŝ} ∩ {N = n, ĵ = j, b̂ = b}

)
≤ α

2
+ exp

{
− β

2(r0 − 1)

48 log2(2p)

}
+ p exp

{
− ϑ2(r0 − 1)

128 log2(2p)

}
+4p2 log2(2p)r0Φ̄(d1)

≤ α,

where the final bound follows as in the proof of Theorem 3.1.

(b) We use the events Ω0,Ω1,Ω2,Ω3 defined in the proof of Theorem 3.2. Recall from the
argument immediately below (3.9) that when C3 ≥ 144C2

2 ∨ 80C5 ∨ 160, we have τ ĵ
N,b̂
≤ ℓ/16

and d1 ≤ minj′∈S |θj
′ |
√
ℓ/12 on Ω0∩Ω3. Recall also the definition of Ξj

′,j
n,b from Algorithm 3.2.

Then, for any z < n ≤ z + r, j ∈ [p], j′ ∈ S \ {j} and b ∈ B, we have

Pz,θ
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b, j′ /∈ Ŝ}

∣∣ Xj
1 , X

j
2 , . . .

)
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= Pz,θ
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b} ∩

{
|Ξj

′,j
n,b | < bmin

√
τ jn,b + ℓ+ d1

}
| Xj

1 , X
j
2 , . . .

)
≤ Pz,θ

(
{τ jn,b ≤ ℓ/16} ∩

{
|Ξj

′,j
n,b | − bmin

√
τ jn,b + ℓ < d1

} ∣∣∣∣ Xj
1 , X

j
2 , . . .

)
≤ 1

2
e−d

2
1/2,

(3.11)

where, in the final bound, we have used the facts that Ξj
′,j
n,b | τ

j
n,b ∼ N

(
θj

′
min{(n + ℓ −

z)(τ jn,b + ℓ)−1/2, (τ jn,b + ℓ)1/2}, 1
)

and that

|θj′ |min
{
(n+ ℓ− z)(τ jn,b + ℓ)−1/2, (τ jn,b + ℓ)1/2

}
− bmin

√
τ jn,b + ℓ

≥ 4|θj′ |
√
ℓ√

17
− bmin

√
17ℓ

4
√
2
≥ |θ

j′ |
√
ℓ

6
≥ 2d1,

when τ jn,b ≤ ℓ/16. Hence

Pz,θ(Ŝ ∪ {ĵ} + S)

≤ Pz,θ(Ωc
0) + Pz,θ(Ω0 ∩ Ωc

1) + Pz,θ(Ω0 ∩ Ωc
2) + Pz,θ(Ω0 ∩ Ω1 ∩ Ω2 ∩ Ωc

3)

+

z+⌊r⌋∑
n=z+1

p∑
j=1

∑
b∈B

∑
j′∈S\{j}

Pz,θ
(
Ω3 ∩ {N = n, ĵ = j, b̂ = b, j′ /∈ Ŝ}

)
≤ 2p{pγ(β−2 ∨ 1)α−1}−C2

1C5s/128 +
z

4γ
+ 2p log2(4p){pγ(β−2 ∨ 1)α−1}−C2

1C3/640

+ 2rp2 log2(4p){pγ(β−2 ∨ 1)α−1}−C2
1/8 + 2rp2 log2(2p){pγ(β−2 ∨ 1)α−1}−C2

1/3888

+ rp2 log2(2p){pγ(β−2 ∨ 1)α−1}−C2
1C

2
2/2 ≤ α,

where the penultimate inequality follows from (3.6), (3.7), (3.8), (3.9) and (3.11), and the
last inequality follows by choosing the universal constant C1 > 0 to be sufficiently large.

Proof of Proposition 3.4. Fix N ∈ Tr,m and ψ ∈ JN . Denote

Θ̃ :=
{
θ ∈ Rp : θj ∈ {0, 1/(8

√
r)}, |supp(θ)| = m

}
,

and let Θ̃pa ⊆ Θ̃ be an (m/4)-packing set with respect to the symmetric difference metric
defined above, i.e. for any θ, θ̃ ∈ Θ̃pa, we have d

(
supp(θ), supp(θ̃)

)
> m/4. We also have

KL
(
P(z+r)
z,θ , P

(z+r)

z,θ̃

)
= r∥θ − θ̃∥2/2 ≤ m/64.

Enumerate Θ̃pa =
{
θ(1), θ(2), . . . , θ(|Θ̃pa|)

}
. Let φ∗ := sargminℓ∈[|Θ̃pa|] d

(
ψ, supp(θ(ℓ))

)
.

Note that φ∗ is also FN -measurable. Then for any z ∈ N ∪ {0},

sup
θ∈Θr,m

Ez,θd
(
ψ, supp(θ)

)
≥ m

8|Θ̃pa|

|Θ̃pa|∑
ℓ=1

Pz,θ(ℓ)
(
d
(
ψ, supp(θ(ℓ))

)
>
m

8

)



3.6 Auxiliary results 97

≥ m

8|Θ̃pa|

|Θ̃pa|∑
ℓ=1

Pz,θ(ℓ)(φ
∗ ̸= ℓ)

=
m

8

{
1− 1

|Θ̃pa|

|Θ̃pa|∑
ℓ=1

Pz,θ(ℓ)(φ
∗ = ℓ)

}

≥ m

8

{
3

4
− 1

|Θ̃pa|

|Θ̃pa|∑
ℓ=1

Pz,θ(ℓ)(φ
∗ = ℓ,N ≤ z + r)

}

=
m

8

{
3

4
− 1

|Θ̃pa|

|Θ̃pa|∑
ℓ=1

P(z+r)
z,θ(ℓ)

(φ∗ = ℓ,N ≤ z + r)

}
. (3.12)

Now set

φ̃∗ :=

{
φ∗ if N ≤ z + r

1 if N > z + r.

Then φ̃∗ is Fz+r-measurable and by Fano’s inequality (Yu, 1997, Lemma 3), we have

1

|Θ̃pa|

|Θ̃pa|∑
ℓ=1

P(z+r)
z,θ(ℓ)

(φ∗ = ℓ,N ≤ z + r) ≤ 1

|Θ̃pa|

|Θ̃pa|∑
ℓ=1

P(z+r)
z,θ(ℓ)

(φ̃∗ = ℓ)

≤
log 2 + |Θ̃pa|−2

∑|Θ̃pa|
j,k=1KL

(
P(z+r)
z,θ(j)

, P
(z+r)
z,θ(k)

)
log |Θ̃pa|

≤ log 2 +m/64

log |Θ̃pa|
. (3.13)

By Massart (2007, Lemma 4.7), there exists an (m/4)-packing set with

log |Θ̃pa| ≥ m/8. (3.14)

Combining (3.12), (3.13) and (3.14), we conclude that

sup
z∈N∪{0},θ∈Θr,m

Ez,θ d
(
ψ, supp(θ)

)
≥ m

8

(
3

4
− log 2 +m/64

m/8

)
≥ m

8

(
3

4
− 8 log 2

m
− 1

8

)
≥ m

32
,

where we have used the assumption that m ≥ 15 in the final inequality.

3.6 Auxiliary results

Proposition 3.5. Let X1, X2, . . . be independent random variables with X1, . . . , Xz
iid∼ N (0, 1)

and Xz+1, Xz+2, . . .
iid∼ N (θ, 1). Assume that 0 < b ≤ θ and let tn,b be defined as in (3.1) for
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n ∈ N. Then for any α ∈ (0, 1), and any stopping time N satisfying P(N < z) ≤ α/2, we
have that the confidence interval

C0 :=
[
N − tN,b −

4{Φ−1(1− α/4)}2

b2
, N

]
satisfies P(z ∈ C0) ≥ 1− α.

Remark. We could also replace 4{Φ−1(1 − α/4)}2/b2 by 8 log(2/α)/b2 in the confidence
interval construction, if we apply the final bound from Lemma 3.6 to (3.15).

Proof. For n ∈ N, define Rn,b := max{Rn−1,b+b(Xn−b/2), 0}, with R0,b = 0. By Lemma 2.11,
we have tN,b = min{i : 0 ≤ i ≤ N,RN−i,b = 0} = sargmax0≤h≤N

∑N
i=N−h+1 b(Xi − b/2). Let

Un,b :=
∑z+n

i=z+1(Xi − b/2) for n ∈ N, with U0,b := 0. Then Rn+z,b ≥ bUn,b for all n ∈ N.
Hence, for y ∈ [0,∞), we have

P(N− tN,b−y ≥ z) ≤ P
(

inf
n∈N0:n≥z+y

Rn,b = 0

)
≤ P

(
inf

n∈N0:n≥y
Un,b ≤ 0

)
≤ 2Φ̄

(√
y(θ−b/2)

)
,

(3.15)
where the last inequality follows from Lemma 3.6. Thus, if we choose y = 4{Φ−1(1−α/4)}2/b2,
then we are guaranteed that P(N − tN,b− y > z) ≤ α/2. Combining this with the assumption
that P(N < z) ≤ α/2, the desired result follows.

Lemma 3.6. Let Y1, Y2, . . .
iid∼ N (µ, 1). Define Un :=

∑n
i=1 Yi for n ∈ N0, and let ξ :=

sargminn∈N0
µUn. Then, for y ∈ [0,∞), we have

P(ξ ≥ y) ≤ P
(

inf
n∈N0:n≥y

µUn ≤ 0
)
≤ 2Φ̄

(√
y|µ|

)
≤ e−yµ2/2.

Proof. The first inequality holds since µUξ ≤ µU0 = 0. For the second and third inequalities,
we may assume without loss of generality that µ > 0, since the result is clear when µ = 0,
and if µ < 0 then the result will follow from the corresponding result with µ > 0 by setting
Y ′
i := −Yi for i ∈ N. Note that (Un − nµ)n∈N0 is a standard Gaussian random walk starting

at 0. Let (Bt)t∈[0,∞) denote a standard Brownian motion starting at 0. Then, we have for
any y ∈ N0 and u > 0 that

P
(

inf
n∈N0:n≥y

Un ≤ 0

∣∣∣∣ Uy = u

)
≤ P

{
inf

t∈[y,∞)
(Bt + tµ) ≤ 0

∣∣∣∣ By = u

}
≤ e−2uµ, (3.16)

where the final inequality follows from Siegmund (1986, Proposition 2.4 and Equation (2.5)).
Thus, for y ∈ [0,∞), we have

P
(

inf
n∈N0:n≥y

Un ≤ 0

)
= P

(
U⌈y⌉ ≤ 0

)
+ E

{
P
(

inf
n∈N0:n≥⌈y⌉

Un ≤ 0

∣∣∣∣ U⌈y⌉

)
1{U⌈y⌉>0}

}
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≤ Φ̄
(√
⌈y⌉µ

)
+

∫ ∞

0

1√
2π⌈y⌉

e
− (u−⌈y⌉µ)2

2⌈y⌉ e−2uµ du

= 2Φ̄
(√
⌈y⌉µ

)
≤ 2Φ̄

(√
yµ
)
≤ e−yµ2/2.

where the first inequality follows from (3.16) and the fact that U⌈y⌉ ∼ N (⌈y⌉µ, ⌈y⌉) and the
last inequality follows from the standard normal distribution tail bound Φ̄(x) ≤ e−x2/2/2 for
x ≥ 0.

In the proposition below, we assume the Gaussian data generating mechanism given at
the beginning of Section 3.3.

Proposition 3.7. Assume that θ has an effective sparsity of s := s(θ) ≥ 2. Then, the right
endpoint N of the interval output from the ocd_CI′ algorithm, with inputs (Xt)t∈N, 0 < β ≤ ϑ,
a > 0, T diag = log{16pγ log2(4p)} and T off = 8 log{16pγ log2(2p)}, satisfies

Pz,θ
(
N > z + r

)
≤ exp

{
− β2(r − 1)

48 log2(2p)

}
+ p exp

{
− ϑ2(r − 1)

128 log2(2p)

}
,

for all r ≥
{

24T off log2(2p)
ϑ2

∨ 12(a2∨8 log 2)s log2(2p)
ϑ2

∨ 24Tdiags log2(2p)
β2

}
+ 2.

Proof. For θ ∈ Rp with effective sparsity s(θ), there is at most one coordinate in θ of magnitude
larger than ϑ/

√
2, so there exists b∗ ∈

{
β/
√
s(θ) log2(2p),−β/

√
s(θ) log2(2p)

}
⊆ B such that

J :=
{
j ∈ [p] : θj/b∗ ≥ 1 and |θj | ≤ ϑ/

√
2
}

has cardinality at least s(θ)/2. Note that the condition θj/b∗ ≥ 1 above ensures that
{θj : j ∈ J } all have the same sign as b∗. By Proposition 2.8, we have on the event {N > z}
that

q(X1, . . . , Xz, θ) := max
{
tjz,b∗ : j ∈ J

}
≤ 8T diags log2(2p)

β2
. (3.17)

We now fix

r ≥
{
24T off log2(2p)

ϑ2
∨ 12(a2 ∨ 8 log 2)s log2(2p)

ϑ2
∨ 24T diags log2(2p)

β2

}
+ 2 =: r0. (3.18)

For j ∈ J , define the event
Ωjr :=

{
tjz+⌊r⌋,b∗ > 2⌊r⌋/3

}
.

By applying Lemma 2.11 to tjz+⌊r⌋,b∗ , we have for j ∈ J that

tjz+⌊r⌋,b∗ = sargmax
0≤h≤z+⌊r⌋

z+⌊r⌋∑
i=z+⌊r⌋−h+1

b∗(X
j
i − b∗/2) ≥ sargmax

0≤h≤⌊r⌋

z+⌊r⌋∑
i=z+⌊r⌋−h+1

b∗(X
j
i − b∗/2)
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= sargmax
0≤h≤⌊r⌋

z+⌊r⌋−h∑
i=z+1

−b∗(Xj
i − b∗/2) = ⌊r⌋ − largmax

0≤h≤⌊r⌋

z+h∑
i=z+1

−b∗(Xj
i − b∗/2).

Recall that Xz+1, Xz+2, . . .
iid∼ Np(θ, Ip). Hence, by applying Lemma 2.16(b) with a = 0, b =

|b∗|/2 and c = ⌊r⌋/3, we have

Pz,θ
(⋂
j∈J

(Ωjr)
c

)
=
∏
j∈J

Pz,θ
(
tjz+⌊r⌋,b∗ ≤

2⌊r⌋
3

)

≤
∏
j∈J

Pz,θ
(
largmax
0≤h≤⌊r⌋

z+h∑
i=z+1

−b∗(Xj
i − b∗/2) ≥

⌊r⌋
3

)

≤
∏
j∈J

Pz,θ
(

sup
h≥⌊r⌋/3

z+h∑
i=z+1

−sgn(b∗)(Xj
i − b∗/2) ≥ 0

)
≤ exp

(
−|J |b2∗⌊r⌋/24

)
≤ exp

(
−sb2∗⌊r⌋/48

)
. (3.19)

We now work on the event Ωjr, for some fixed j ∈ J . We note that (3.18) guarantees that
r ≥ 2, and thus tjz+⌊r⌋,b∗ ≥

⌈
2⌊r⌋/3

⌉
≥ 2. Then, by (3.17) and (3.18), we have r0 > 3tjz,b∗ ,

and hence by Lemma 2.19,

⌊r⌋
3

<
tjz+⌊r⌋,b∗

2
≤ τ jz+⌊r⌋,b∗ ≤

3tjz+⌊r⌋,b∗
4

≤
3
(
tjz,b∗ + r

)
4

< r.

We conclude that
2/3 ≤ ⌊r⌋/3 < τ jz+⌊r⌋,b∗ ≤ ⌊r⌋. (3.20)

Recall that Λ·,j
z+⌊r⌋,b∗ ∈ Rp records the tail CUSUM statistics with tail length τ jz+⌊r⌋,b∗ . We

observe by (3.20) that only post-change observations are included in Λ·,j
z+⌊r⌋,b∗ . Hence we have

that
Λk,jz+⌊r⌋,b∗

∣∣ τ jz+⌊r⌋,b∗
ind∼ N

(
θkτ jz+⌊r⌋,b∗ , τ

j
z+⌊r⌋,b∗

)
(3.21)

for k ∈ [p] \ {j}. By the definition of the effective sparsity of θ, the set

Lj :=
{
j′ ∈ [p] : |θj′ | ≥ ϑ√

s log2(2p)
and j′ ̸= j

}

has cardinality at least s− 1. Hence, by (3.20), for all k ∈ Lj ,

|θk|
√
τ jz+⌊r⌋,b∗ >

√
ϑ2⌊r⌋

3s log2(2p)
=: ãr.
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We then observe, from (3.18), that

ãr > 2
(
a ∨

√
8 log 2

)
. (3.22)

Hence, from (3.21), we have for all k ∈ Lj that

Pz,θ
(
Ωjr ∩

{
|Λk,jz+⌊r⌋,b∗ | <

1

2
ãr

√
τ jz+⌊r⌋,b∗

} ∣∣∣∣τ jz+⌊r⌋,b∗

)
≤ 1

2
e−ã

2
r/8 =: qr.

We denote
U j :=

∣∣∣∣{k ∈ Lj : |Λk,jz+⌊r⌋,b∗ | <
1

2
ãr

√
τ jz+⌊r⌋,b∗

}∣∣∣∣.
Then, by the Chernoff–Hoeffding binomial tail bound (Hoeffding, 1963, Equation (2.1)), we
have

Pz,θ
(
Ωjr ∩

{
U j ≥ |Lj |/2

} ∣∣∣ τ jz+⌊r⌋,b∗

)
≤ exp

{
−|L

j |
2

log

(
1

4qr(1− qr)

)}
≤ exp

{
−|L

j |
2

(
ã2r
8
− log 2

)}
≤ exp

(
−3|Lj |ã2r

64

)
≤ exp

{
− ϑ2⌊r⌋
128 log2(2p)

}
, (3.23)

where the penultimate inequality follows from (3.22). Now, on the event Ωjr ∩
{
U j < |Lj |/2

}
,

we have

∑
j′∈[p]:j′ ̸=j

(
Λj

′,j
z+⌊r⌋,b∗

)2
τ jz+⌊r⌋,b∗ ∨ 1

1{
|Λj′,j

z+⌊r⌋,b∗
|≥a

√
τ j
z+⌊r⌋,b∗

}
≥

∑
j′∈[p]:j′ ̸=j

(
Λj

′,j
z+⌊r⌋,b∗

)2
τ jz+⌊r⌋,b∗ ∨ 1

1{
|Λj′,j

z+⌊r⌋,b∗
|≥ 1

2
ãr

√
τ j
z+⌊r⌋,b∗

} ≥ ã2r
4

{
|Lj | −

(⌈ |Lj |
2

⌉
− 1
)}

=
ã2r
4

⌈
|Lj |+ 1

2

⌉
≥ ϑ2⌊r⌋

24 log2(2p)
≥ T off , (3.24)

where the penultimate inequality uses the fact that |Lj | ≥ s− 1 and the last inequality follows
from (3.18). We now denote

Ẽjr :=

{ ∑
j′∈[p]:j′ ̸=j

(
Λj

′,j
z+⌊r⌋,b∗

)2
τ jz+⌊r⌋,b∗ ∨ 1

1{
|Λj′,j

z+⌊r⌋,b∗
|≥a

√
τ j
z+⌊r⌋,b∗

} < T off

}
.

Combining (3.19), (3.23) and (3.24), we deduce that

Pz,θ
(
N > z + r

)
≤ Pz,θ

(
N > z + ⌊r⌋

)
≤ Pz,θ

(⋂
j∈J

(Ωjr)
c

)
+
∑
j∈J

Pz,θ
(
Ẽjr ∩ Ωjr

)
≤ Pz,θ

(⋂
j∈J

(Ωjr)
c

)
+
∑
j∈J

Pz,θ
(
Ωjr ∩

{
U j ≥ |Lj |/2

})
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≤ exp

{
−sb

2
∗(r − 1)

48

}
+ p exp

{
− ϑ2(r − 1)

128 log2(2p)

}
,

as desired.

Lemma 3.8. Let U ∼ N (0, φ1), V ∼ N (0, φ2 − φ1), Y ∼ N (αφ3, φ3) and Z ∼ N (αφ4, φ4)

be independent random variables.

(a) Assume that min{φ2, φ3}/4 ≥ κ ≥ φ1 ≥ 0 for some κ > 0. Then

P
(
|U + V + Y |√

φ2 + φ3
≥ |U + Y |√

φ1 + φ3

)
≤ exp

(
−κα

2

6

)
.

(b) Assume that min{φ1, φ3}/4 ≥ κ ≥ φ4 ≥ 0 for some κ > 0. Then

P
(
|U + Y + Z|√
φ1 + φ3 + φ4

≥ |Y |√
φ3

)
≤ exp

(
−κα

2

12

)
.

Proof. The case α = 0 is trivial in both cases, so without loss of generality, we may assume
α > 0 throughout the rest of the proof.
(a) Let

W1 :=
(√

φ2 + φ3 −
√
φ1 + φ3

)
(U + Y )−

√
φ1 + φ3 V,

so that

W1 ∼ N
(
αφ3

(√
φ2 + φ3 −

√
φ1 + φ3

)
,
{(√

φ2 + φ3 −
√
φ1 + φ3

)2
+ φ2 − φ1

}
(φ1 + φ3)

)
.

Hence, by the standard Gaussian tail bound used at the end of the proof of Lemma 3.6, we
have

P(W1 ≤ 0) ≤ 1

2
e−α

2/(2w1), (3.25)

where w1 :=
φ1+φ3
φ23

(
1 + φ2−φ1

(
√
φ2+φ3−

√
φ1+φ3)2

)
. Then

w1 =
φ1 + φ3
φ23

(
1 +

(√
φ2 + φ3 +

√
φ1 + φ3

)2
φ2 − φ1

)

≤ 5

16κ

(
1 +

(√
8κ+

√
5κ
)2

3κ

)
≤ 3

κ
, (3.26)

where the first inequality holds because w1 is increasing in φ1 and decreasing in both φ2 and
φ3. Hence, using the fact that −(U + V + Y ) ≤st U + V + Y , as well as (3.25) and (3.26), we
have

P
(
|U + V + Y |√

φ2 + φ3
≥ |U + Y |√

φ1 + φ3

)
≤ P

({
U + Y√
φ1 + φ3

≤ U + V + Y√
φ2 + φ3

}
∩ {U + V + Y ≥ 0}

)
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+ P
({

U + Y√
φ1 + φ3

≤ −U + V + Y√
φ2 + φ3

}
∩ {U + V + Y < 0}

)
≤ 2P

(
U + Y√
φ1 + φ3

≤ U + V + Y√
φ2 + φ3

)
= 2P(W1 ≤ 0) ≤ exp

(
−κα

2

6

)
,

as required.

(b) Let
W2 :=

(√
φ1 + φ3 + φ4 −

√
φ3
)
Y −

√
φ3(U + Z),

so that

W2 ∼ N
(
αφ3

√
φ1 + φ3 + φ4 − α(φ3 + φ4)

√
φ3,
{(√

φ1 + φ3 + φ4 −
√
φ3
)2

+ φ1 + φ4
}
φ3

)
.

Note that the assumption guarantees that E(W2) > 0. Hence, by the standard Gaussian tail
bound used at the end of the proof of Lemma 3.6, we have

P(W2 ≤ 0) ≤ 1

2
e−α

2/(2w2), (3.27)

where

w2 :=
(
√
φ1 + φ3 + φ4 −

√
φ3)

2 + φ1 + φ4(√
φ3(φ1 + φ3 + φ4)− φ3 − φ4

)2 .

Calculating the partial derivatives of w2 with respect to φ1, φ3 and φ4 and simplifying the
expressions, we have

∂w2

∂φ1
=

(φ3 + φ4)
√
φ3 − (φ3 + 2φ4)

√
φ1 + φ3 + φ4

√
φ1 + φ3 + φ4

(√
φ3(φ1 + φ3 + φ4)− φ3 − φ4

)3 ≤ 0,

∂w2

∂φ3
=
−
(√
φ1 + φ3 + φ4 −

√
φ3
)2[

3φ1 + φ4 +
(√
φ1 + φ3 + φ4 −

√
φ3
)2]

2
√
φ3(φ1 + φ3 + φ4)

(√
φ3(φ1 + φ3 + φ4)− φ3 − φ4

)3 ≤ 0,

∂w2

∂φ4
=

2φ1
(
2
√
φ1 + φ3 + φ4 −

√
φ3
)2

+ 3(φ3 + φ4)
(√
φ1 + φ3 + φ4 −

√
φ3
)2

2(φ1 + φ3 + φ4)
(√

φ3(φ1 + φ3 + φ4)− φ3 − φ4
)3

+
(φ1 + φ4)(φ3 + φ4)

2(φ1 + φ3 + φ4)
(√

φ3(φ1 + φ3 + φ4)− φ3 − φ4
)3 ≥ 0.

Thus w2 is increasing in φ4 and decreasing in both φ1 and φ3 and hence

w2 ≤
6

κ
. (3.28)
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Hence, using the fact that −(U +Y +Z) ≤st U +Y +Z, as well as (3.27) and (3.28), we have

P
(
|U + Y + Z|√
φ1 + φ3 + φ4

≥ |Y |√
φ3

)
≤ P

({
Y√
φ3
≤ U + Y + Z√

φ1 + φ3 + φ4

}
∩ {U + Y + Z ≥ 0}

)
+ P

({
Y√
φ3
≤ − U + Y + Z√

φ1 + φ3 + φ4

}
∩ {U + Y + Z < 0}

)
≤ 2P

(
Y√
φ3
≤ U + Y + Z√

φ1 + φ3 + φ4

)
= 2P(W2 ≤ 0) ≤ exp

(
−κα

2

12

)
,

as required.
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