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Abstract
We introduce a new method for high- dimensional, on-
line changepoint detection in settings where a p- variate 
Gaussian data stream may undergo a change in mean. 
The procedure works by performing likelihood ratio 
tests against simple alternatives of different scales in 
each coordinate, and then aggregating test statistics 
across scales and coordinates. The algorithm is online in 
the sense that both its storage requirements and worst- 
case computational complexity per new observation are 
independent of the number of previous observations; in 
practice, it may even be significantly faster than this. We 
prove that the patience, or average run length under the 
null, of our procedure is at least at the desired nomi-
nal level, and provide guarantees on its response delay 
under the alternative that depend on the sparsity of the 
vector of mean change. Simulations confirm the practi-
cal effectiveness of our proposal, which is implemented 
in the R package ocd, and we also demonstrate its util-
ity on a seismology data set.
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1 |  INTRODUCTION

Modern technology has not only allowed the collection of data sets of unprecedented size, but 
has also facilitated the real- time monitoring of many types of evolving processes of interest. 
Wearable health devices, astronomical survey telescopes, self- driving cars and transport network 
load- tracking systems are just a few examples of new technologies that collect large quantities of 
streaming data, and that provide new challenges and opportunities for statisticians.

Very often, a key feature of interest in the monitoring of a data stream is a changepoint; that is, a 
moment in time at which the data- generating mechanism undergoes a change. Such times often rep-
resent events of interest, for example, a change in heart function, and moreover, the accurate identifi-
cation of changepoints often facilitates the decomposition of a data stream into stationary segments.

Historically, it has tended to be univariate time series that have been monitored and studied, 
within the well- established field of statistical process control (e.g. Barnard, 1959; Duncan, 1952; 
Fearnhead & Liu, 2007; Oakland, 2007; Page, 1954; Tartakovsky et al., 2014). These days, how-
ever, it is frequently the case that many data processes are measured simultaneously. In the con-
text of changepoint detection, this introduces the new challenge of borrowing strength across the 
different component series in an attempt to detect much smaller changes than would be possible 
through the observation of any individual series alone.

The field of changepoint detection and estimation also has a long history (e.g. Page, 1955), 
but has been undergoing a marked renaissance in recent years; entry points to the field include 
Csörgő and Horváth (1997) and Horváth and Rice (2014). However, the vast majority of this 
ever- growing literature has focused on the offline changpoint problem, where, after the entire 
data stream is observed, the statistician is asked to identify any changepoints retrospectively. For 
univariate, offline changepoint estimation, state- of- the- art methods include the pruned exact 
linear time method (PELT) (Killick et al., 2012), narrowest- over- threshold (NOT) (Baranowski 
et al., 2019), simultaneous multiscale changepoint estimator (SMUCE) (Frick et al., 2014) and 
ℓ0- penalisation (Wang et  al., 2018), while work on multivariate and high- dimensional offline 
changepoints includes the double CUSUM method of Cho (2016), the inspect algorithm of 
Wang and Samworth (2018), as well as Enikeeva and Harchaoui (2019), Liu et al. (2021) and 
Padilla et al. (2019).

Despite this rich literature on offline changepoint problems, it is the online version of the 
problem that is arguably the more important for many applications: one would like to be able to 
detect a change as soon as possible after it has occurred. Of course, one option here is to apply 
an offline method after seeing every new observation (or batch of observations). However, this 
is unlikely to be a successful strategy: not only is there a difficult and highly dependent multiple 
testing issue to handle when using the method repeatedly on data sets of increasing size (see also 
Chu et al. (1996) for further discussion of this point), but moreover, the storage and running time 
costs may frequently be prohibitive.

In this work, we are interested in algorithms for detecting changepoints in high- dimensional 
data that are observed sequentially. In order to avoid the trap mentioned in the previous para-
graph and ensure that any methods we consider can be applied to large data streams, we will 
focus our attention on online algorithms. By this, we mean that the computational complexity 
for processing a new observation, as well as the storage requirements, depend only on the 
number of bits needed to represent the new observation.1 Importantly, they are not allowed to 
 1For the purpose of this definition, we ignore the errors in rounding real numbers to machine precision. Thus, when we 
later work with observations having Gaussian (or other absolutely continuous) distributions, we do not distinguish 
between these distributions and quantised versions where the data have been rounded to machine precision.
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depend on the number of previously observed data points. This turns out to be a very stringent 
requirement, in the sense that finding online algorithms with good statistical performance is 
typically extremely challenging. Online algorithms must necessarily store only compact sum-
maries of the historical observations, so the class of all possible procedures is severely 
restricted.

To set the scene for our contributions, let X1, X2, . . . be a sequence of independent random 
vectors in ℝp. Assume that for some unknown, deterministic time z ∈ ℕ ∪ {0}, the sequence is 
generated according to 

for some !−, !+ ∈ ℝp. When μ+ ≠ μ−, we say that there is a changepoint at time z. In many 
applications, such as in industrial quality control where the distribution of relevant properties 
of goods in a manufacturing process under regular conditions may be well understood, we 
may assume that the mean before the change is known (or at least can be estimated to high 
accuracy using historical data). However, the vector of change, θ := μ+ − μ−, is typically un-
known. Thus, for simplicity, we will work in the setting where μ− = 0 and μ+ = θ. Let ℙz,! de-
note the joint distribution of (Xn)∞n=1 under (1) and !z,! the expectation under this distribution. 
Note that when θ = 0, the joint distribution of the data does not depend on z, and we therefore 
let ℙ0 = ℙz,0 denote this joint distribution (with corresponding expectation !0). We will then 
say that the data is generated under the null. By contrast, if θ ≠ 0, we will say that the data is 
generated under the alternative, though we emphasise that in fact the alternative is composite, 
being indexed by z ∈ ℕ ∪ {0} and ! ∈ ℝp∖{0}. In practice, in order for our procedure to have 
uniformly non- trivial power, it will be necessary to work with a subset of the alternative hy-
pothesis parameter space that is well- separated from the null, in the sense that the ℓ2- norm of 
the vector of mean change, ϑ := ‖θ‖2, is at least a known lower bound ! > 0.

A sequential changepoint procedure is an extended stopping time2 N (with respect to the 
natural filtration) taking values in ℕ ∪ {∞}. Equivalently, we can think of it as a family of 
{0,1}- valued estimators (Ĥn)

∞
n=1, where Ĥn = Ĥn(X1,… ,Xn), and where the sequence is increas-

ing in the sense that Ĥm(X1,… ,Xm) ≤ Ĥn(X1,… ,Xn) for m ≤ n. Here, the correspondence arises 
from Ĥn = !{N≤n} and N = inf{n ∈ ℕ : Ĥn = 1}, with the usual convention that inf ∅ := ∞.

We measure the performance of a sequential changepoint procedure via its responsiveness 
subject to a given upper bound on the false alarm rate, or equivalently, a lower bound on the 
average run length in the absence of change. Specifically, following the concepts introduced by 
Lorden (1971), we define the patience (this is sometimes referred to as the average run length 
under the null or average run length to false alarm in the literature) of a sequential changepoint 
procedure N to be !0(N), and its worst- case response delay (likewise, this is sometimes referred to 
as the worst- worst- case average detection delay) to be

While controlling the worst- case response delay provides a very strong theoretical guarantee 
of the average detection delay of the procedure, even under the worst possible pre- change 

(1)X1,… ,Xz ∼p(!−, Ip) and Xz+1,Xz+2,…∼p(!+, Ip),

 2A random variable τ taking values in ℕ ∪ {∞} is an extended stopping time with respect to the filtration (n)n∈ℕ, if 
{! = n} ∈ n for all n ∈ ℕ.

!
wc
! (N) := sup

z ∈ℕ ∪ {0}
ess sup!z,!

{
(N −z)∨0|X1,… ,Xz

}
.
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data sequence, obtaining a good bound for this quantity is often difficult. We therefore also 
consider the average- case response delay, or simply the response delay of a procedure N, 
 defined as

We note that !!(N) ≤ !
wc
! (N). A good sequential changepoint procedure should have small 

worst-  and average- case response delays, uniformly over the relevant class of alternatives 
{ℙz,! : (z, !) ∈ (ℕ ∪ {0}) ×ℝp, ‖!‖2 ≥ "}, subject to its patience being at least some suitably large, 
pre- determined γ > 0. Finally, as mentioned above, we are interested in sequential changepoint pro-
cedures that are online, so that the computational complexity per additional observation should be 
a function of p only.

Our main contribution in this work is to propose, in Section 2, a new algorithm called ocd 
(short for online changepoint detection), for high- dimensional, online changepoint detection in 
the above setting. The procedure works by performing likelihood ratio tests against simple alter-
natives of different scales in each coordinate, and then aggregating test statistics across scales and 
coordinates for changepoint detection. The ocd algorithm has worst- case computational complex-
ity O

(
p2log(ep)

)
 per new observation, so satisfies our requirement for being an online algorithm. 

In fact, as we explain in Section 2.1, the algorithmic complexity is often even better than this. 
Moreover, as we illustrate in Section 4, it has extremely effective empirical performance. In terms 
of theoretical guarantees, it turns out to be more convenient to analyse a slight variant of our initial 
algorithm, which we refer to as ocd′. This has the same order of computational complexity per 
new observation as ocd, but enables us to ensure that whenever we are yet to declare that a change 
has occurred, only post- change observations contribute to the running test statistics. In practice, 
the original ocd algorithm also appears to have this property for typical pre- change sequences, and 
we argue heuristically that there is a sense in which it is more efficient than ocd′ by a factor of at 
most 2.

Our theoretical analysis in Section 3 initially considers separately versions of the ocd′ algo-
rithm best tuned towards settings where the vector θ of change is dense, and where it is sparse in 
an appropriate sense. We then present results for a combined, adaptive procedure that seeks the 
best of both worlds. In all cases, the appropriate version of ocd′ has guaranteed patience, at least 
at the desired nominal level. In the (small- change) regime of primary interest, and when ϑ is of 
the same order as !, the response delay of ocd′ is of order at most 

√
p∕!2 in the dense case, up to 

a polylogarithmic factor; this can be improved to order s/!2, again up to a polylogarithmic factor, 
when the effective sparsity of θ is s <

√
p.

As alluded to above, there is a paucity of prior literature on multivariate, online change-
point problems, though exceptions include Tartakovsky et  al. (2006), Mei (2010) and Zou 
et al. (2015). These works focus either on the case where both the pre-  and post- change dis-
tributions are exactly known, or where, for each coordinate, both the sign and a lower bound 
on the magnitude of change, are known in advance. A number of methods have also been 
proposed that involve scanning a moving window of fixed size for changes (Chan, 2017; Soh 
& Chandrasekaran, 2017; Xie & Siegmund, 2013). Such methods can be effective when the 
signal- to- noise ratio is large enough that the change can be detected within the prescribed 
window, but may experience excessive response delay in other cases. Of course, the window 
size may be increased to compensate, but this correspondingly increases the computational 

!!(N) := sup
z∈ℕ∪{0}

!z,!

{
(N − z) ∨ 0

}
.
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complexity and storage requirements, so allowing the window size to vary with the signal 
strength would fail to satisfy our definition of an online algorithm. Recently, Gösmann et al. 
(2020) presented a new monitoring procedure for changepoints in the mean structure of a 
high- dimensional time series. Their method is sequential but not online as we defined it here, 
because at each time point, their monitoring statistic is computed using the entire data his-
tory up to that point. We also mention that online changepoint detection has been studied 
in the econometrics literature, where the problem is often referred to as that of monitoring 
structural breaks (Chu et al., 1996; Leisch et al., 2000; Zeileis et al., 2005). These works have 
studied low- dimensional regression settings, and asymptotic theory has been provided on the 
probability of eventual declaration of change.

Numerical results illustrate the performance of our ocd algorithm in Section 4. Proofs of our 
main results are given in Section 5. All the auxiliary lemmas and their proofs are provided in the 
online supplementary material Chen et al. (2021).

1.1 | Notation

We write ℕ0 for the set of all non- negative integers. For d ∈ ℕ, we write [d] := {1, . . . , d}. Given 
a, b ∈ ℝ, we denote a ∨ b := max(a,b) and a ∧ b :=min(a, b). For a set S, we use !S and |S| to 
denote its indicator function and cardinality, respectively. For a real- valued function f on a to-
tally ordered set S, we write sargmaxx∈S f (x) :=min argmaxx∈S f (x), the smallest maximiser of f 
in S. For a vector v =

(
v1,… , vM

)⊤
∈ ℝM, we define ‖v‖0 :=

∑M
i=1 !{vi≠0}, ‖v‖2 :=

{∑M
i=1 (v

i)2
}1∕2

 
and ‖v‖∞ :=maxi∈[M]|vi|. In addition, we define v−j := (v1,… , v j−1, v j+1,… , vM )⊤ ∈ ℝ

M−1. For 
a matrix A = (Ai, j) ∈ ℝ

d1×d2 and j ∈ [d2], we write A⋅, j :=
(
A1, j,… ,Ad1, j

)⊤
∈ ℝ

d1 and 
A−j, j :=

(
A1, j,… ,A j−1, j,Aj+1, j,… ,Ad1, j

)⊤
∈ ℝ

d1−1. We use Φ(·) and ϕ(·) to denote the distribu-
tion function and density function of the standard normal distribution, respectively. For two 
real- valued random variables U and V, we write U ≥st V if ℙ(U ≤ x) ≤ ℙ(V ≤ x) for all x ∈ ℝ. We 
adopt the convention that an empty sum is 0.

2 |  AN ONLINE CHANGEPOINT PROCEDURE

2.1 | The ocd algorithm

In this section, we describe our online changepoint procedure, ocd, in more detail. As men-
tioned in the introduction, the procedure aggregates likelihood ratio test statistics against 
simple alternatives of different scales in different coordinates. For i ∈ [n] and j ∈ [p], we write 
Xj
i  for the jth coordinate of Xi. If we want to test a null of  (0, 1) against a simple post- change 

alternative distribution of  (b, 1) for some b ≠ 0 in coordinate j ∈ [p], by Page (1954), the op-
timal online changepoint procedure is to declare that a change has occurred by time n when 
the test statistic

(2)Rj
n,b

:= max
0≤h≤n

n∑

i=n−h+1

b(Xj
i − b∕2)
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exceeds a certain threshold. Note that ∑n
i=n−h+1 b(X

j
i − b∕2) can be viewed as the likelihood ratio test 

statistic between the null and this simple alternative using the tail sequence Xn−h+1, … , Xn. Thus, Rj
n,b

 
can be regarded as the most extreme of these likelihood ratio statistics, over all possible starting 
points for the tail sequence. Write

for the length of the tail sequence in which the associated likelihood ratio statistic (in the jth coordi-
nate) is maximised. One way to aggregate across the p coordinates would be to use ∑p

j=1 R
j
n,b

 as a test 
statistic. However, this approach is not ideal for two reasons. First, the exact distribution of the tail 
likelihood ratio statistic Rj

n,b
 is hard to obtain, making it difficult to analyse the aggregated statistic 

under the null. More importantly, this aggregated statistic uses the same simple alternative  (b, 1) in 
all coordinates, and so even after varying the magnitude of b, it is only effective against a very limited 
set of alternative distributions in {ℙz,! : z ∈ ℕ, ‖!‖2 ≥ "}, namely those for which the change is of 
very similar magnitude in all coordinates. In order to overcome these problems, our procedure uses 
the coordinate- wise statistics (Rj

n,b
: j ∈ [p]), which we call ‘diagonal statistics’, to detect changes that 

have a large proportion of their signal concentrated in one coordinate. To detect denser changes, for 
each j ∈ [p], we also compute tail partial sums of length tj

n,b
 in all other coordinates j′ ≠ j, given by

and aggregate them to form an ‘off- diagonal statistic’ anchored at coordinate j. Note that the number 
of summands in Aj

′,j
n,b

 depends only on the observed data in the jth coordinate, and not on the data 
being aggregated in the j′th coordinate. These off- diagonal statistics are used to detect changes 
whose signal is not concentrated in a single coordinate. Intuitively, if a change has occurred and 
!j ∕b ≥ 1, then we can expect the tail length in coordinate j to be roughly of order n−z for sufficiently 
large n, and this will ensure that the off- diagonal statistic anchored at coordinate j is close to the 
generalised likelihood ratio test statistic between the null and the composite alternative 
{ℙz,! : ‖!‖2 ≠ 0}. If, in addition, a non- trivial proportion of the signal is contained in coordinates [p] \ {j}, 
then this statistic will be powerful for detecting the change.

The full description of the ocd procedure is given in Algorithm 1. Note that for notational 
simplicity, we have suppressed the time dependence of many variables as they are updated recur-
sively in the algorithm. In the following, when necessary, we will make this dependence explicit 
by writing An,b, tn,b,Qn,b, S

diag
n  and Soffn  for the relevant quantities at the end of the nth iteration 

of the repeat loop.
By Lemma 1, bAj,j

n,b
− b2tj

n,b
∕2, as defined in the algorithm, is equal to the quantity Rj

n,b
 defined 

in Equation (2) (we will also suppress its n dependence when it is clear from the context). 
Moreover, by Lemma 2, the two definitions of tj

n,b
 from Algorithm 1 and Equation (3) coincide. In 

the algorithm, we allow b to range over the (signed) dyadic grid  ∪0, since the maximal signal 
strength in individual coordinates, ‖!‖∞, can range from !∕

√
p to ϑ. In this way, the algorithm 

automatically adapts to different signal strengths in each coordinate. Here, the inclusion of 0 
and the extra logarithmic factors in the denominators of elements of  ∪0 appear due to tech-
nical reasons in the theoretical analysis of the algorithm.

(3)tj
n,b

:= sargmax
0≤h≤n

n∑

i=n−h+1

b(Xj
i − b∕2)

Aj
′,j
n,b

:=
n∑

i=n−t
j
n,b

+1

Xj′

i ,
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Algorithm 1 uses Sdiag and Soff to aggregate diagonal and off- diagonal statistics, respectively, as 
mentioned above, and declares that a change has occurred as soon as either of these quantities 
exceeds its own pre- determined threshold. As mentioned previously, Sdiag tracks the maximum 
of Rj

b
 over all scales b and coordinates j. Before introducing Soff, we first discuss the off- diagonal 

statistics Qj
b
 in Algorithm 1, which are ℓ2 aggregations of normalised tail sums Aj

′,j
b
∕
√
tj
b
∨ 1, each 

F I G U R E  1  Behaviour of the three normalised statistics in ocd under the null and under the alternative 
with different signal strength, sparsity level and assumed lower bound. A change is declared as soon as one of 
these three normalised statistics exceeds 1. The data were generated in the top- left panel according to ℙ0, and, 
in the other panels, according to ℙz,!, with p = 100, z = 300 and θ = ϑU, where U is uniformly distributed on the 
union of all s- sparse unit spheres in ℝp (see Section 4.2 for a more detailed description)
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hard- thresholded at level a. The hard thresholding level can be chosen to detect dense or sparse 
signals θ; in the sparse case a non- zero a facilitates an aggregation that aims to exclude coordinates 
with negligible change (thereby reducing the variance of the normalised tail sums). Finally, Soff is 
computed as the maximum of the Qj

b
 over all anchoring coordinates j ∈ [p] and scales b ∈  .

Although the off- diagonal statistics described in the previous paragraph are effective for de-
tecting changes when the signal sparsity is known, it is desirable to the practitioner to have a 
combined procedure that adapts to the sparsity level. This may be computed straightforwardly 
by tracking Soff for a = adense and a = asparse, as well as Sdiag, and declaring a change when any 
of these three statistics exceeds a suitable threshold. Figure 1 illustrates the performance of this 
adaptive procedure, together with the time evolution of normalised versions of all three statistics 
tracked, in synthetic data sets both with and without a change. This adaptive procedure is anal-
ysed theoretically in Section 3 and empirically in Section 4.

The ocd procedure satisfies our definition of an online algorithm. Indeed, for each new ob-
servation Xn, ocd updates tn,b ∈ ℝp and An,b ∈ ℝp×p for O

(
p2log(ep)

)
 different values of b. It then 

computes Sdiagn  and Soffn  via An,b. These steps require O
(
p2log(ep)

)
 operations. Moreover, the total 

storage used is O
(
p2log(ep)

)
 throughout the algorithm.

In fact, the computational complexity of ocd can often be reduced, because typically 
 := {tj

b
: j ∈ [p], b ∈ } has cardinality much less than p|| (which is the worst case, when all 

elements are distinct). Correspondingly, at each time step, we need only store the p × | | ma-
trix (Bk,t)k∈[p],t∈  given by Bk,t

j
b := Ak,j

b
, resulting in an improved per- iteration computational 

complexity and storage for ocd of O(p| |). For simplicity of exposition, we have not presented 
this computational speed- up in Algorithm 1, and it appears to be difficult to provide theoretical 
guarantees on | |. Nevertheless, we have implemented the algorithm in this form in the R pack-
age ocd (Chen et al., 2020), and have found it to provide substantial computational savings in 
practice.

2.2 |  A slight variant of  ocd

While the ocd algorithm performs very well numerically, it turns out to be easier theoretically 
to analyse a slight variant, which we call ocd′, and describe in Algorithm 2. Again, we have 
suppressed the time dependence n of many variables including !n,b, !̃n,b,Λn,b and Λ̃n,b in the 
algorithm. The main difference between these two algorithms is that in ocd′, the off- diagonal 
statistics Qj

b
 are computed using tail partial sums of length ! j

b
 instead of tj

b
. These new tail partial 

sums are recorded in Λb ∈ ℝp×p.
By Lemma 9, we always have

whenever tj
b
≥ 2. In this sense, the tail sample size used by ocd′ is smaller than that of ocd by 

a factor of at most 2. The benefit of using a shorter tail in ocd′ is that when n exceeds a 
known, deterministic threshold, we can be sure that whenever we have not declared that a 
change has occurred by time z, the tail partial sum consists exclusively of post- change obser-
vations. In practice, we observe that even in Algorithm 1, the tail lengths tj

z,b
 at the change-

point are generally very short for many coordinates, so the inclusion of a few pre- change 
observations in the tail partial sum calculation does not significantly affect the efficacy of the 
changepoint detection procedure. The practical performance of Algorithm 1 is statistically 

(4)tj
b
∕2 ≤ ! j

b
< 3tj

b
∕4
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more efficient than Algorithm 2 in many settings by a factor of between 4/3 and 2, as sug-
gested by Equation (4). By construction, ! j

b
 and Λ⋅,j

b
 are computable online, through auxiliary 

variables !̃ j
b
 and Λ̃⋅,j

b
. Indeed, Algorithm 2 is also an online algorithm, with overall computa-

tional complexity per observation and storage remaining at O
(
p2log(ep)

)
 in the worst case; 

similar computational improvements to those mentioned for ocd at the end of Section 2.1 are 
also possible here.

3 |  THEORETICAL ANALYSIS

As mentioned in Section 2, the input a in Algorithms 1 and 2 allows users to detect changepoints 
of different sparsity levels. More precisely, for any ! ∈ ℝp, we have by Lemma 8 that there exists 
a smallest s(!) ∈ {20, 21,… , 2⌊log2p⌋} such that the set

has cardinality at least s(θ). On the other hand, we also have |(!)| ≤ s(!)log2(2p). We call s(θ) the 
effective sparsity of the vector θ and (!) its effective support. Intuitively, the sum of squares of coordi-
nates in the effective support of θ has the same order of magnitude as ‖!‖22, up to logarithmic factors. 
Moreover, if θ is an s- sparse vector in the sense that ‖!‖0 ≤ s, then s(θ) ≤ s, and the equality is attained 
when, for example, all non- zero coordinates have the same magnitude.

In this section, we initially analyse the theoretical performance of Algorithm 2 for two dif-
ferent choices of a in Soff = Soff(a), namely a = 0 and a =

√
8 log(p − 1). We then present our 

combined, adaptive procedure and its performance guarantees.

(!) :=

{

j ∈ [p] : |!j| ≥
‖!‖2√

s(!)log2(2p)

}



   | 243CHEN et al.

Define Ndiag := inf{n: Sdiagn ≥ Tdiag} and Noff
= Noff(a) := inf{n: Soffn (a) ≥ Toff}. Then the 

stopping time for our changepoint detection procedure is simply N = N(a) = Ndiag ∧Noff(a).

3.1 | Dense case

Here, we analyse the changepoint detection procedure N = N(0), which, as we will see, is most 
suitable for detecting dense mean changes in the sense that s(!) ≥

√
p (though we do not assume 

this in our theory). In this case, when p ≥ 2 and conditionally on ! j
b
, the quantity Qj

b
 follows a chi- 

squared distribution with p − 1 degrees of freedom under the null, provided that ! j
b
 is positive. 

(When p = 1, we have that Qj
b
= 0 for all j ∈ [p] and b ∈ , so Soff = 0 and the off- diagonal statistic 

never triggers the declaration of a change. Similarly, if p ≥ 2 but ! j
n,b

= 0, then we also have 
Qj
n,b

= 0.) Motivated by the chi- squared tail bound of Laurent and Massart (2000, Lemma 1), we 
choose a threshold of the form

say, for some T̃off > 0.
The following theorem provides control of the patience of ocd′.

Theorem 1 Let X1, X2, . . . be generated according to ℙ0. For any γ ≥ 1, let (Xt)t∈ℕ , ! > 0, a = 0, 
Tdiag = log {16pγ log2(4p)} and Toff = !(T̃off) with T̃off = 2 log{16p!log2(2p)} be the inputs of 
Algorithm 2, with corresponding output N. Then !0(N) ≥ !.

We note that either of the two statistics Sdiag and Soff may trigger a false alarm under the null. 
The two threshold levels T diag and T off are chosen so that !0(Ndiag) and !0(Noff) have comparable 
upper bounds. We also remark that although Theorem 1 as stated only controls the expected 
value of N under the null, careful examination of the proof reveals that we can also control 
ℙ0(N ≤m) for every m ∈ ℕ. More precisely, from Equations (15) and (16) in the proof, we can 
deduce that

for every m ∈ ℕ. The same bound holds for our other patience control results below, though we omit 
formal statements for brevity.

Our next result controls the response delay of ocd′ in both worst- case and average senses.

Theorem 2 Assume that X1, X2, . . . are generated according to ℙz,! for some z and θ such that 
‖!‖2 = " ≥ # > 0 and that θ has an effective sparsity of s := s(θ). Then there exists a univer-
sal constant C > 0, such that the output N from Algorithm 2, with inputs (Xt)t∈ℕ, ! > 0 , a = 0, 
Tdiag = log{16pγ log2(4p)} and Toff = !(T̃off) with T̃off = 2 log{16p!log2(2p)}, satisfies

(5)Toff := p − 1 + T̃
off

+

√
2(p − 1)T̃

off
= : !(T̃

off
),

ℙ0(N ≤m) ≤
m
4!

(6)!
wc
! (N) ≤ C

{√
p log(ep")

#2
∨
s log(ep") log(ep)

$2
∨ 1

}

.
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Furthermore, there exists !0(s) > 0, depending only on s, such that for all ! ≤ !0(s), the output 
N satisfies

for s ≥ 2, and

for s = 1.

We defer detailed discussion of our response delay bounds until after we have presented our 
adaptive procedure in Section 3.3.

3.2 | Sparse case

We now assume that p ≥ 2, and analyse the performance of N = N
(√

8 log(p − 1)
)
 ; in other words, 

we choose a =
√
8 log(p − 1). This choice turns out to work particularly well when the vector of 

mean change is sparse in the sense that s(!) ≤
√
p, though again we do not assume this in our the-

ory. The motivation for this choice of a comes from the fact that, for fixed b and j, we have 
Λ
j′, j
b

|! j
b

iid
∼ (0, !

j
b
) for j′ ∈ [p]∖{j} under the null. Since a is the threshold level for |Λj′, j

b
|∕
√
!
j
b
 , it 

is therefore natural to choose a to be of the same order as the maximum absolute value of p−1 inde-
pendent and identically distributed  (0, 1) random variables. The declaration threshold T off is de-
termined based on Lemma 10. Theorem 3 below shows that, in the sparse case, the patience of our 
procedure is also guaranteed to be at least at the nominal level γ > 0. In addition, as in the dense case, 
we can also control the response delay of ocd′ according to Theorem 4.

Theorem 3 Let X1,  X2,. . . be generated according to ℙ0. For any γ  ≥  1, let (Xt)t∈ℕ , !  >  0, 
a =

√
8 log(p − 1), Tdiag = log{16pγ log2(4p)} and Toff = 8 log{16pγ log2(2p)} be the inputs of 

Algorithm 2, with corresponding output N. Then !0(N) ≥ !.

Theorem 4 Assume that X1, X2,. . . are generated according to ℙz,! for some z and θ such that 
‖!‖2 = " ≥ # > 0 and that θ has an effective sparsity of s := s(θ). Then there exists a uni-
versal constant C > 0, such that the output N from Algorithm 2, with inputs (Xt)t∈ℕ , ! > 0, 
a =

√
8 log(p − 1), Tdiag = log{16pγ log2(4p)} and Toff = 8 log{16pγ log2(2p)}, satisfies

Comparing Theorems 2 and 4, we see that the thresholding induced by the non- zero choice of 
a =

√
8 log(p − 1) in Theorem 4 facilitates an improved dependence on the effective sparsity s in 

the bound on the response delay, whenever s is of smaller order than 
√
p.

(7)!!(N) ≤ C

{√
p log(ep")

#2
∨

√
s log(ep∕$) log(ep)

$2
∨ 1

}

,

(8)!!(N) ≤ C

{
log(ep") log(ep)

#$
∨ 1

}
,

(9)!!(N) ≤ !
wc
! (N) ≤ C

{
s log(ep") log(ep)

#2
∨ 1

}
.
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3.3 | Adaptive procedure

To adapt to different sparsity levels s, we can run ocd (or ocd′) with two values of a simul-
taneously: we choose a = adense = 0 to form the off- diagonal dense statistic Soff,d = Soff(adense), 
and a = asparse =

√
8 log(p − 1) to form the off- diagonal sparse statistic Soff,s  =  Soff(asparse). We 

recall that the diagonal statistic Sdiag does not depend on the choice of a. For clarity, we redefine 
the three stopping times here: Ndiag := inf{n : Sdiagn ≥ Tdiag}, Noff,d := inf{n : Soff,dn ≥ Toff,d} and 
Noff,s := inf{n : Soff,sn ≥ Toff,s}, for appropriately chosen thresholds T diag, T off,d and T off,s. The out-
put of this adaptive procedure is thus N = Ndiag ∧Noff,d ∧Noff,s.

The following results provide patience and response delay guarantees for this adaptive procedure.

Theorem 5 Let X1,  X2, . . . be generated according to ℙ0. For any γ  ≥  1, let (Xt)t∈ℕ , !  >  0, 
Tdiag  =  log{24pγlog2(4p)}, Toff,d = !(T̃off,d) with T̃off,d = 2 log{24p! log2(2p)} and  
Toff,s = 8 log{24pγ log2(2p)} be the inputs of the adaptive version of Algorithm 2, with corre-
sponding output N. Then !0(N) ≥ !.

Theorem 6 Assume that X1, X2,. . . are generated according to ℙz,! for some z and θ such that 
‖!‖2 = " ≥ # > 0 and that θ has an effective sparsity of s := s(θ). Then there exists a universal 
constant C > 0, such that the output N from the adaptive version of Algorithm 2, with inputs 
(Xt)t∈ℕ, ! > 0, Tdiag = log{24pγ log2(4p)}, Toff,d = !(T̃off,d) with T̃off,d = 2 log{24p! log2(2p)} 
and Toff,s = 8 log{24pγ log2(2p)}, satisfies

Furthermore, there exists !0(s) ∈ (0, 1∕2] , depending only on s, such that for all ! ≤ !0(s), the 
output N satisfies

for s ≥ 2, and

for s = 1.

Comparing these two results with the corresponding theorems in Sections 3.1 and 3.2, we see 
that by choosing slightly more conservative thresholds, the adaptive procedure retains the nom-
inal patience control while (up to constant factors) achieving the best of both worlds in terms of 
its response delay guarantees under different sparsity regimes.

To better understand the worst- case and average- case response delay bounds in Theorem 6, 
it is helpful to assume that !∕C1 ≤ " ≤ ! ≤ C1 and log(!∕") ≤ C2 logp for some C1,C2 > 0. Under 
these additional assumptions, the result of Theorem 6 takes the simpler form that for some C > 0, 
depending only on C1 and C2, we have

(10)!
wc
! (N) ≤ C

{
s log(ep") log(ep)

#2
∨ 1

}
.

(11)!!(N) ≤ C

{(√
p log(ep")

#2
∨

√
s log(ep$−1) log(ep)

$2

)

∧
s log(ep") log(ep)

$2

}

,

(12)!!(N) ≤
C log(ep") log(ep)

#2
,
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In particular, the average- case response delay upper bound exhibits a phase transition when the 
effective sparsity level s is of order 

√
p, which is the boundary between the sparse and dense cases. 

Similar sparsity- related elbow effects have been observed in the minimax rate for high- dimensional 
Gaussian mean testing (Collier et al., 2017) and the corresponding offline changepoint detection 
problem (Liu et al., 2021). On the other hand, we note that quadratic dependence on ϑ in the de-
nominator, and the logarithmic dependence on γ in the numerator, are known to be optimal in the 
case when p = 1 (Lorden, 1971, Theorem 3). The different dependencies on sparsity of the worst- case 
and average- case response delays for the dense, sparse and adaptive versions of ocd′ are illustrated 
in Figure 2.

3.4 | Relaxation of assumptions

The setting we consider for our theoretical results, with independent Gaussian observations hav-
ing identity covariance matrix, is convenient for facilitating a relatively clean presentation and 
to clarify the main ideas behind the ocd procedure. Nevertheless, it is of interest to consider 
more general data- generating mechanisms, where these assumptions are relaxed. Focusing on 
the dense case for simplicity of exposition, the Gaussianity assumption ensures that our aggre-
gated statistics have chi- squared distributions (under the null) or non- central chi- squared dis-
tributions (under the alternative), so we can apply existing sharp tail bounds. If, instead, our 
observations have sub- Gaussian distributions, then the corresponding statistics would have sub- 
Gamma distributions, in the terminology of Boucheron et al. (2013), so Bernstein's inequality 
could be applied to give alternative bounds in this setting. Another place where we make use of 
the Gaussianity assumption is in comparing the trajectories of our test statistics with a Brownian 

!
wc
! (N) ≤

Cs log2(ep)

"2
and !!(N) ≤

C(s ∧ p1∕2) log2(ep)

"2
.

F I G U R E  2  Illustration of the dependencies on sparsity of the worst- case and average- case response delays 
for the dense, sparse and adaptive versions of ocd′, as given by Theorems 2, 4 and 6
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motion with drift (see, for instance, the proof of Lemma 6). Since we can view these trajectories 
as discrete Gaussian random walks, we can establish direct inequalities in this comparison. If 
we were to relax the Gaussianity, then we would need to rely on Donsker's invariance principle, 
or preferably its finite- sample version given by the Hungarian embedding (Komlós et al., 1976).

In cases where the covariance matrix of the observations were unknown, it may be possible 
to estimate this using a training sample, known to come from the null hypothesis, and use this to 
pre- whiten the data. The form of the estimator to be used should be chosen to exploit any known 
dependence structure (e.g. banding, Toeplitz or tapering) between the different coordinates. 
Similar remarks apply when there is short- range serial (temporal) dependence between succes-
sive observations. In Section 4.4, we demonstrate one way of handling temporal dependence with 
real data, by studying the residuals of the fit of an autoregressive model.

4 |  NUMERICAL STUDIES

In this section, we study the empirical performance of the ocd algorithm and compare it with 
other online changepoint detection methods. Recall that the (adaptive) ocd algorithm declares a 
change when any of the three statistics Sdiag, Soff,d and Soff,s exceeds their respective thresholds 
T diag, T off,d and T off,s. If a priori knowledge about the signal sparsity is available, it may be slightly 
preferable to use Ndiag ∧Noff,d in the dense case, and Ndiag ∧Noff,s in the sparse case, but for 
simplicity of exposition, we will focus on the adaptive version of our ocd procedure throughout 
the remainder of this section. While the threshold choices given in Theorem 5 guarantee that the 
patience of (adaptive) ocd will be at least at the nominal level, in practice, they may be conserva-
tive. We therefore describe a scheme for practical choice of thresholds in Section 4.1. Recall that, 
in order to form Soff,d and Soff,s, two different entrywise hard thresholds for Aj

′, j
b

∕

√
tj
b
∨ 1 need to 

be specified. For Soff,d, we choose a = 0 for both theoretical analysis and practical usage. For Soff,s, 
the theoretical choice is a =

√
8 log(p − 1), but since this is also slightly conservative, the choice 

of a =
√
2 logp is used in our practical implementation of the algorithm, and our numerical sim-

ulations below.

4.1 | Practical choice of declaration thresholds

The purpose of this section is to introduce an alternative to using the theoretical thresholds T diag, 
T off,d and T off,s provided by Theorem 5, namely to determine the thresholds through Monte Carlo 
simulation. The basic idea is that since the null distribution is known, we can simulate from it 
to determine the patience for any given choice of thresholds. A complicating issue is the fact 
that the choices of the three thresholds T diag, T off,d and T off,s are related, so that we may be able 
to achieve the same patience by increasing T diag and decreasing T off,d, for example. To handle 
this, we first argue that the renewal nature of the processes involved means that, at least for 
moderately large thresholds, the times to exceedance for each of the three statistics Sdiag, Soff,d 
and Soff,s are approximately exponentially distributed. Evidence to support this is provided by 
Figure 3, where we present QQ- plots of Ndiag/m(Ndiag), Noff,d/m(Noff,d) and Noff,s/m(Noff,s), where 
the m(N) statistics are empirical medians of the corresponding N statistics (divided by log 2) over 
200 repetitions.

We can therefore set an individual Monte Carlo threshold for Sdiag as follows (the other two 
statistics can be handled in identical fashion): for r  ∈  [B], simulate X (r)

1 ,… ,X (r)
!

iid
∼p(0, Ip) 
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and for each n ∈  [γ], compute the diagonal statistic Sdiag,(r)n  on the rth sample. Now compute 
V (r) :=max1≤n≤!S

diag,(r)
n , and take T̃diag to be the (1/e)th quantile of {V (r) : r ∈ [B]}. The ratio-

nale for the final step here is that if ℙ0(V (1) < T̃diag) = 1∕e, then ℙ0(Ñ
diag

> !) = 1∕e, where 
Ñdiag :=min{n : Sdiagn ≥ T̃diag}. Thus, under an exponential distribution for Ñdiag, we have that 
Ñdiag has individual patience γ.

Having determined appropriate thresholds T̃diag, T̃off,d and T̃off,s, we can then use similar ideas 
to set a suitable combined threshold T  comb. In particular, we also argue that Ndiag ∧Noff,d ∧Noff,s 
has an approximate exponential distribution; see Figure 3 for supporting evidence. We therefore 
proceed as follows: for r ∈ [B], simulate X̃ (r)

1 ,… , X̃ (r)
!

iid
∼p(0, Ip) and use this new data to com-

pute S̃diag,(r)n := Sdiag,(r)n ∕T̃diag, S̃off,d,(r)n := Soff,d,(r)n ∕T̃off,d and S̃off,s,(r)n := Soff,s,(r)n ∕T̃off,s for each 
n ∈ [γ], and set W (r) :=max

{
S̃diag,(r)n ∨ S̃off,d,(r)n ∨ S̃off,s,(r)n :n ∈ [!]

}
 on the rth sample. Now take T comb 

to be the (1/e)th quantile of {W (r) : r ∈ [B]}. Similar to before, our reasoning here is that if 
ℙ0(W

(1) < Tcomb) = 1∕e, then Ndiag : =min
{
n : Sdiagn ≥ T̃diagTcomb

}
, Noff,d : =min

{
n : Soff,dn ≥ T̃off,dTcomb

}
 

and Noff,s :=min
{
n : Soff,sn ≥ T̃off,sTcomb

}
 satisfy

ℙ0

(
Ndiag ∧Noff,d ∧Noff,s > !

)
= 1∕e.

F I G U R E  3  QQ- plots of standardised versions of Ndiag, Noff,d and Noff,s, as well as N = Ndiag ∧ Noff,d ∧ Noff,s, 
against theoretical Exp(1) quantiles

T A B L E  1  Estimated run lengths under the null using the Monte Carlo thresholds described in Section 4.1 
over 500 repetitions, with desired patience level γ = 5000. Algorithm is terminated after 20000 data points for 
each repetition. Each reported value is the average run length taken over the repetitions which have already 
declared prior to time 20000. For reference, !(X |X < 20000) ≈ 4626.9 when X∼Exp(1/5000)

p = 100 p = 1000
! = 2 4606.2 4480.8
! = 1/2 5291.5 4383.6
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Thus, under an exponential distribution for Ndiag ∧Noff,d ∧Noff,s, it again has the desired nom-
inal patience. Our practical thresholds, therefore, are Tdiag = T̃diagTcomb, Toff,d = T̃off,dTcomb and 
Toff,s = T̃off,sTcomb for Sdiag, Soff,d and Soff,s, respectively. Table 1 confirms that, with these choices of 
Monte Carlo thresholds, the patience of the adaptive ocd algorithm remains at approximately the 
desired nominal level.

4.2 | Numerical performance of ocd

In this section, we study the empirical performance of ocd. As shown in Figure 1, under the 
alternative, all three statistics Sdiag, Soff,d and Soff,s in ocd can be the first to trigger a declaration 
that a mean change has occurred. We thus examine different settings under which each of these 
three statistics can, respectively, be the quickest to react to a change. Our simulations were run 
for p = 100, s ∈ {1, ⌊p1∕2 ⌋ , p}, z ∈ {0, 1000}, ! = 5000, " ∈ {2, 1, 0.5, 0.25}, # ∈ {", 4", "∕4}. In 
all cases, θ was generated as ϑU, where U is uniformly distributed on the union of all s- sparse 
unit spheres in ℝp. By this, we mean that we first generate a uniformly random subset S of [p] of 
cardinality s, then set U := Z/‖Z‖2, where Z = (Z1, . . ., Zp)⊤ has independent components satisfy-
ing Zj ∼ (0, 1)!{j∈S}. Instead of terminating the ocd procedure once one of the three statistics 
declares a change (as we would in practice), we run the procedure until all three statistics have 
exceeded their respective thresholds. Tables 2 and 3 summarise the performance of the three sta-
tistics for z = 0. Simulation results for z = 1000 were similar, and are therefore not included here.

We first discuss the case when ! is correctly specified (Table 2). When the sparsity s is small 
or moderate and ϑ is small, the diagonal statistic Sdiag is likely to be the first to declare a change. 
The response delay of Sdiag increases with s, which means that the off- diagonal sparse statistic 
Soff,s typically reacts quickest to a change when the s is moderate to large and ϑ is not too small. 

T A B L E  2  Estimated response delays over 200 repetitions for Ndiag, Noff,d and Noff,s and the response delay of 
the combined declaration time N for ocd, with the percentages of repetitions on which each statistics triggers 
the declaration first (or equal first) shown in parentheses. The quickest response in each setting is given in bold. 
Other parameters: p = 100, γ = 5000, z = 0 and ! = "U, where the distribution of U is described in Section 4.2

s ϑ

! = ϑ

Ndiag Noff,d Noff,s N

1 2 11.5 (83.5) 19.4 (1.5) 13.0 (35) 11.2
1 1 40.6 (79.5) 74.4 (1.5) 47.4 (19) 39.1
1 0.5 136.3 (82) 305.2 (1) 169.2 (17) 129.7
1 0.25 455.4 (83) 1124.5 (1) 635.0 (16) 433.6
10 2 20.1 (9.5) 19.2 (9.5) 14.7 (88) 14.3
10 1 69.7 (15.5) 72.6 (12) 52.4 (73.5) 50.4
10 0.5 240.4 (29.5) 308.0 (3) 207.7 (68) 197.1
10 0.25 723.3 (56.5) 1124.3 (6) 760.7 (37.5) 648.4
100 2 53.3 (0.5) 19.7 (92) 27.4 (10) 19.5
100 1 169.9 (2) 75.2 (85) 94.9 (14.5) 73.1
100 0.5 544.1 (9) 300.6 (75.5) 345.1 (15.5) 278.9
100 0.25 1493.6 (28.5) 1206.0 (51.5) 1420.2 (20) 1065.4



250 |   CHEN et al.

On the other hand, the stopping time Noff,d, which is driven by the off- diagonal dense statistic, 
is not significantly affected by s (in agreement with our average- case bound in Theorem 2), and 
is usually the dominant statistic when the signal is dense. A further observation is that the three 
individual response delays, as well as the combined response delay, are all approximately propor-
tional to ϑ−2, a phenomenon which is supported by Theorem 6.

Table 3 presents corresponding results when ! is both over-  and under- specified. We note that 
both Noff,d and Noff,s are almost unaffected by either type of misspecification. For Ndiag, a mild over- 
misspecification of ! helps it to react faster, while an under- misspecification causes it to have increased 
response delay. However, since we can also observe that Ndiag rarely declares first by a large margin, 
the performance of ocd is highly robust to misspecification of !, especially when s is not too small.

4.3 | Comparison with other methods

We now compare our adaptive ocd algorithm with other online changepoint detection algo-
rithms proposed in the literature, namely those of Mei (2010), Xie and Siegmund (2013) and 
Chan (2017). Since we were unable to find publicly available implementations of any of these 
algorithms, we briefly describe below their methodology and the small adaptations that we made 
in order to allow them to be used in our settings.

Mei (2010) assumes knowledge of θ, and, on observing each new data point, aggregates likeli-
hood ratio tests in each coordinate of the null  (0, 1) against an alternative of  (!j, 1) in the jth 
coordinate. More precisely, in the notation of Equation (2), the algorithm declares a change when 
either ∑j∈[p]R

j

n,!j
 or maxj∈[p]R

j

n,!j
 exceeds given thresholds. In our setting where we do not know 

θ and only assume that ‖!‖2 ≥ ", we replace ∑j∈[p]R
j

n,!j
 and maxj∈[p]R

j

n,!j
 with

T A B L E  3  Estimated response delays over 200 repetitions for Ndiag, Noff,d and Noff,s and the response delay 
of the combined declaration time N for ocd. Settings where ! is both over-  and under- specified are given. The 
quickest response in each setting is given in bold. Other parameters: p = 100, γ = 5000, z = 0 and ! = "U,  where 
the distribution of U is described in Section 4.2

s ϑ

! = 4ϑ ! = ϑ/4

Ndiag Noff,d Noff,s N Ndiag Noff,d Noff,s N

1 2 7.7 19.5 12.8 7.6 30.3 19.5 12.6 12.6
1 1 27.8 77.7 48.3 27.6 98.3 73.7 45.2 45.1
1 0.5 92.9 288.9 162.0 92.3 304.8 304.9 171.8 171.1
1 0.25 351.7 1148.7 657.2 342.8 746.7 1158.1 614.0 586.7
10 2 16.7 19.0 14.9 13.7 50.0 20.4 15.1 15.0
10 1 57.6 72.9 51.2 46.5 161.9 76.5 54.7 54.5
10 0.5 228.3 286.4 201.0 180.5 509.0 314.7 203.6 201.8
10 0.25 739.3 1175.1 787.9 645.1 1208.2 1189.6 725.1 715.9
100 2 59.2 18.9 25.3 18.7 110.8 21.2 27.2 20.5
100 1 213.9 73.0 92.4 71.0 347.4 76.8 95.5 74.2
100 0.5 696.5 307.0 385.0 284.8 1029.0 310.2 352.5 289.3
100 0.25 1811.5 1218.1 1327.4 967.1 2149.9 1091.9 1175.9 957.8
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respectively.
The algorithms of Xie and Siegmund (2013) and Chan (2017) have a similar flavour. The idea 

is to test the null p(0, Ip) distribution against an alternative where the jth coordinate has a 
(1 − p0) (0, 1) + p0 (!j, 1) mixture distribution, for some known p0 ∈ [0, 1] and unknown 
!j ∈ ℝ. After specifying a window size w, both algorithms search for the strongest evidence 
against the null from the past r ∈ [w] observations. Specifically, writing Zjn,r := r−1∕2

∑n
i=n−r+1 X

j
i  

for n ∈ ℕ, r ∈ [n] and j ∈ [p], the test statistics are of the form

where Xie and Siegmund (2013) take (λ, κ, w)  =  (1,  2,  200) and Chan (2017) takes 
(!, ",w) = (2

√
2 − 2, 4, 200). Since such a test statistic is only effective when ∑j∈[p](!

j∨0)2 is large, 
we considered statistics of the form S+XS,C(p0, !, ",w) ∨ S

−
XS,C(p0, !, ",w), where S−XS,C(p0, !, ",w) re-

places the exponent Zjn,r ∨ 0 with Zjn,r ∧ 0. An adaptive choice of p0 is not provided by the authors, 
but the choices p0 ∈ {1∕

√
p, 0.1, 1} have been considered; we found the choice p0 = 1∕

√
p to be the 

most competitive overall, so for simplicity of exposition, present only that choice in our results.
For each of the Mei (2010), Xie and Siegmund (2013) and Chan (2017) algorithms, we deter-

mined appropriate thresholds using Monte Carlo simulation, as suggested by the authors, and 
in a similar fashion to the way in which we set the ocd thresholds as described in Section 4.1. 
This guarantees that the algorithms have approximately the nominal patience, and so allows us 
to compare the methods by means of the response delay.

Table 4 displays the response delays for the ocd algorithm, as well as the alternative 
methods described above, for p ∈ {100, 2000}, s ∈ {5, ⌊

√
p⌋ , p} and ϑ ∈ {2, 1, 0.5, 0.25}. In 

fact, we also ran simulations for p =  1000, s ∈  {1, p/2} and ϑ =  0.125, but the results are 
qualitatively similar and are therefore omitted. Overall, the results reveal that ocd performs 
very well in comparison with existing methods, across a wide range of scenarios; in several 
cases it is by far the most responsive procedure, and in none of the settings considered is it 
outperformed by much. The Xie and Siegmund (2013) and Chan (2017) algorithms perform 
similarly to each other, and in most settings are both more competitive than the Mei (2010) 
method described above. We note that the performance of the Xie and Siegmund (2013) and 
Chan (2017) algorithms is relatively better when the signal- to- noise ratio ϑ is high; in these 
scenarios, the default window size w = 200 is large enough that sufficient evidence against 
the null can typically be accumulated within the moving window. For lower signal- to- noise 
ratios, this ceases to be the case, and from time z+w onwards, the test statistic has the same 
marginal distribution (with no positive drift). This explains the relative deterioration in per-
formance for those algorithms in the harder settings considered. As mentioned in the in-
troduction, if the change in mean were known to be small, then the window size could be 
increased to compensate, but at additional computational expense; a further advantage of 
ocd, then, is that the computational time only depends on p (and not on ! or other problem 
parameters).

max

{
p∑

j=1

Rj
n,!∕

√
p
,

p∑

j=1

Rj
n,−!∕

√
p

}

and max

{
max
j∈ [p]

Rj
n,!∕

√
p
, max
j∈ [p]

Rj
n,−!∕

√
p

}
,

S+XS,C(p0, !, ",w) := max
r∈ [w∧n]

p∑

j=1

log
(
1 − p0 + !p0e

(Zjn,r∨0)
2∕"

)
,
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4.4 | Real data example

We consider a seismic signal detection problem, using a data set from the High Resolution 
Seismic Network, operated by the Berkeley Seismological Laboratory. Ground motion sensor 
measurements were recorded using geophones at a frequency of 250 Hz in three mutually per-
pendicular directions, at 13 stations near Parkfield, California for a total of 740 s from 2 AM on 
23 December 2004. This data set was also studied by Xie et al. (2019), and was obtained from 
http://servi ce.ncedc.org/fdsnw s/datas elect/ 1/. To begin, we removed the linear trend in each 
coordinate and applied a 2– 16 Hz bandpass filter to the data using the GISMO toolbox3; these are 
standard pre- processing steps in the seismology literature (e.g. Caudron et al., 2018; Xie et al., 
2019). In order to reduce the effects of temporal dependence, we computed a root mean square 

 3Available at: http://geosc ience- community- codes.github.io/GISMO/

T A B L E  4  Estimated response delay for ocd, as well as the algorithms of Mei (2010) (Mei), Xie and 
Siegmund (2013) (XS) and Chan (2017) (Chan) over 200 repetitions, with z = 0, γ = 5000 and ! generated as 
described in Section 4.2. The smallest response delay is given in bold

p s ϑ ocd Mei XS Chan

100 5 2 13.7 36.3 13.1 11.9
100 5 1 46.9 125.9 47.3 42.0
100 5 0.5 174.8 383.1 194.3 163.7
100 5 0.25 583.5 970.4 2147 1888.8
100 10 2 14.9 44.1 15.2 14.5
100 10 1 53.8 150.1 52.9 51.5
100 10 0.5 194.4 458.2 255.8 245.6
100 10 0.25 629.7 1171.3 2730.7 2484.9
100 100 2 19.4 72.7 23.6 27.5
100 100 1 74.4 268.3 89.6 102.1
100 100 0.5 287.9 834.9 526.8 756.0
100 100 0.25 1005.8 1912.9 3598.3 3406.6

2000 5 2 19.0 130.5 20.8 15.6
2000 5 1 67.3 316.7 79.5 59.5
2000 5 0.5 247.3 680.2 607.7 285.0
2000 5 0.25 851.3 1384.8 4459.2 3856.9
2000 44 2 37.5 247.7 40.2 37.7
2000 44 1 136.0 596.1 149.1 145.0
2000 44 0.5 479.1 1270.8 2945.5 2751.4
2000 44 0.25 1584.2 2428.8 4457.8 5049.7
2000 2000 2 97.1 949.9 103.2 136.7
2000 2000 1 360.7 2126.5 1020.0 2074.7
2000 2000 0.5 1296.0 3428.1 4669.3 4672.7
2000 2000 0.25 3436.7 4140.4 5063.7 5233.5

http://service.ncedc.org/fdsnws/dataselect/1/
http://geoscience
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amplitude envelope, downsampled to 16 Hz, and then extracted the residuals from the fit of an 
autoregressive model of order 1. The processed data are available as a built- in data set in the ocd 
R package. The first 4 min of the series were used to estimate the baseline mean and variance for 
each sensor, and we plot the standardised data from 2:04 AM onwards in Figure 4. When apply-
ing our ocd algorithm to this data, we specified the patience level to be γ = 1.35 × 106, corre-
sponding to a patience of one day, and !  =  150. The ocd algorithm declared a change at 
02:10:03.84, and was triggered by Soff,d. According to the Northern California Earthquake 
Catalog4, an earthquake of magnitude 1.47 Md hit near Atascadero, California (50 km away 
from Parkfield) at 02:09:54.01, so the delay was 9.8 s. It is known5 that P waves, which are the 
primary preliminary wave and arrive first after an earthquake, travel at up to 6 km/s in the 
Earth's crust, which is consistent with this delay.

5 |  PROOFS OF MAIN RESULTS

5.1 | Proofs from Section 3.1

Proof of Theorem 1 Define m := ⌊2γ⌋. It suffices to prove that (a) ℙ0(Noff ≤m) ≤ 1∕4 and (b) 
ℙ0(N

diag ≤m) ≤ 1∕4, since then we have

We prove the two claims below.

(a) By Equation (5) and a union bound, we have

Recall that under the null, Λk,j
b
|! j
b

iid
∼ (0, ! j

b
) for all b ∈ , j ∈ [p] and k ∈ [p] \ {j}, which implies that 

Qj
b
|! j
b
∼ "2p−1!{! j

b
> 0}

. Thus, we have by Laurent and Massart (2000, Lemma 1) that for all n ∈ [m], 
j ∈ [p] and b ∈ ,

Combining Equations (13) and (14), we have

(b) For j ∈ [p] and b ∈  ∪0, denote Nj
b
:= inf{n :Rj

n,b
≥ Tdiag}, where Rj

n,b
 is defined by 

 4Available at: http://www.ncedc.org/ncedc/ catalog- search.html.

 5One source for this information is https://www.usgs.gov/natural- hazards/earthquake- hazards/science/
seismographs- keeping- track- earthquakes.

!0(N) = !0(N
off∧Ndiag) ≥ 2!ℙ0(N

off∧Ndiag > 2!)

≥ 2!
{
1−ℙ0(N

off
≤m)−ℙ0(N

diag
≤m)

}
≥ ! .

(13)ℙ0(N
off

≤m) ≤
∑

n∈ [m],j∈ [p]
b∈

ℙ0

(
Qj
n,b

≥ Toff
)

=
∑

n∈ [m],j∈ [p]
b∈

"0

[
ℙ0

(
Qj
n,b

≥ Toff |||!
j
n,b

)]
.

(14)ℙ0

(
Qj
n,b

≥ Toff |||!
j
n,b

)
≤ e−T̃

off
∕2.

(15)ℙ0(N
off

≤m) ≤ ||mpe−T̃
off
∕2

≤ 1∕4.

http://www.ncedc.org/ncedc/catalog
https://www.usgs.gov/natural


254 |   CHEN et al.

Equation (2). By Lemma 1, we have that Rj
n,b

= {Rj
n−1,b

+ b(Xj
n − b∕2)} ∨ 0, and that this process 

is always non- negative. Then Ndiag =min
{
Nj
b
: j ∈ [p], b ∈  ∪0

}
.

Now, fix some j ∈ [p] and b ∈  ∪0. Define U0 := 0 and Uh := inf
{
n > Uh−1 :R

j
n,b

∉ (0,Tdiag)
}

 
for h ∈ ℕ, and let H := inf

{
h :Rj

Uh,b
≥ Tdiag

}
. Then

To study the distribution of H, consider the one- sided sequential probability ratio test of 
H0,Z :Z1,Z2,…

iid
∼ (0, 1) against H1,Z :Z1,Z2,…

iid
∼ (b, 1) with log- boundaries T diag and −∞. 

The associated stopping time for this test is

Since (Rj
n,b
)n is a Markov process that renews itself every time it hits 0, H follows a geometric distri-

bution with success probability

where the last inequality follows from Lemma 3. Consequently,

Nj
b
= UH ≥ H .

Nos := inf

{

n ∈ ℕ : b
n∑

t=1

(Zt − b∕2) ≥ Tdiag
}

.

ℙ0

(
Rj
U1,b

≥ Tdiag
)

≤ ℙH0,Z
(Nos < ∞) ≤ e−T

diag
,

ℙ0

(
Nj
b
≤m

)
≤ ℙ0(H ≤m) ≤ 1 −

(
1−e−T

diag
)m

.

F I G U R E  4  Standardised, pre- processed earthquake data from 39 sensors. The time of the 1.47 Md 
earthquake is given by the vertical red dashed line, while time of ocd declaration of change is given as a blue 
dashed line

Time (in seconds) since 2004/12/23 02:04:00

Se
ns

or
 n

um
be

r

0 50 100 150 200 250 300 350 400 450 500

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39



   | 255CHEN et al.

As the above inequality holds for all j ∈ [p] and b ∈  ∪0, we have that

as desired, where in the penultimate inequality, we twice used the fact that (1−x)α ≥ 1−αx for all 
α ≥ 1 and x ∈ [0,1].

The proof of Theorem 2 is quite involved. We first define some relevant quantities, and then 
state and prove some preliminary results. For ! ∈ ℝp with effective sparsity s(θ), there is at 
most one coordinate in θ of magnitude larger than !∕

√
2, so there exists 

b∗ ∈
{
!∕

√
s(") log2(2p), − !∕

√
s(") log2(2p)

}
⊆  such that

has cardinality at least s(θ)/2 (note that the condition !j∕b∗ ≥ 1 above ensures that {!j : j ∈  } all 
have the same sign as b∗). Both b∗ and   can be chosen as functions of θ. Now, given any sequence 
X1,X2,… ∈ ℝp and ! ∈ ℝp, define for any α ∈ (0,1] the function

where tj
z,b∗

 is obtained by running Algorithm 2 up to time z with a = 0 and Tdiag = Toff =∞. In other 
words, q(α) is the empirical α- quantile of the tail lengths 

(
tj
z,b∗

: j ∈ 

)
 when we run the algorithm 

without declaring any change up to time z. Recall the definition of the function ψ in Equation (5).
Proposition 7 Assume that X1, X2, . . . are generated according to ℙz,! for some z and θ such that 

‖!‖2 = " ≥ # > 0 and that θ has an effective sparsity of s := s(θ) ≥ 2. Then the output N from 
Algorithm 2, with input (Xt)t∈ℕ, ! > 0, a = 0, Tdiag ≥ 1 and Toff = !(T̃off) for T̃off ≥ log(ep) , 
satisfies

for any ! ∈ (0,1].

Proof  Since the bound in Equation (19) is positive, we may, throughout the proof and for arbi-
trary z ∈ ℕ, restrict attention to realisations X1 = x1, . . . , Xz = xz for which we have not declared a 
change by time z. In other words, we have N > z. This restriction also ensures that q(!) defined in 
Equation (18) is now indeed the empirical !- quantile of the tail lengths (tj

z,b∗
: j ∈  ) at the 

changepoint. Denote ! : =
{
j ∈  : tj

z,b∗
≤ q(!)

}
. Then we have |!| ≥ !| | ≥ !s∕2.

(16)
ℙ0(N

diag
> m)=ℙ0

⎛
⎜
⎜
⎝

⋂

j∈[p],b∈∪0

{Nj
b
> m}

⎞
⎟
⎟
⎠
=

∏

j∈[p]

{

1−ℙ0

(
⋃

b∈∪0

{Nj
b
≤m}

)}

≥

[
1− |∪0|

{
1−

(
1−e−T

diag
)m }]p

≥ 1−mp|∪0|e
−Tdiag

≥ 3∕4,

(17) :=
{
j ∈ [p] : !j∕b∗ ≥ 1 and |!j| ≤ "∕

√
2
}

(18)q(!)=q(!;X1,… ,Xz , ") := inf
{
y∈ℝ :

|||{j∈ : tj
z,b∗

≤ y}||| ≥ !| |
}
,

(19)
!z,!

{
(N − z) ∨ 0 | X1,… ,Xz

}
≤
396T̃off + 65

√
pT̃off

"2
+
24log2(2p)

#$2
+ 3q(#) + 2,
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We now fix some

Note that r0 > 3q(!) ≥ 3tj
z,b∗

 for all j ∈ !. For j ∈ !, we define the event

Under ℙz,!, conditional on X1 = x1, . . . , Xz = xz, we know that Xz+1,Xz+2,…
iid
∼p(!, Ip). Hence, by 

using Lemma 2 and applying Lemma 6(b) to tj
z+⌊r⌋,b∗

∧ ⌊r ⌋ for j ∈ !, we obtain

We now work on the event Ωj
r, for some j ∈ !. We note that Equation (20) guarantees that 

r ≥ 2, and thus tj
z+⌊r⌋,b∗

≥ ⌈2⌊r ⌋∕3⌉ ≥ 2. Then, by Lemma 9 and the fact that r0 > 3tj
z,b∗

, we have 
that

Hence we conclude that on the event Ωj
r,

Recall that Λ⋅,j
z+⌊r⌋,b∗

∈ ℝp records the tail CUSUM statistics with tail length ! j
z+⌊r⌋,b∗

. We observe by 
Equation (22) that on Ωj

r, only post- change observations are included in Λ⋅,j
z+⌊r⌋, b∗

. Hence we have 
that on the event Ωj

r,

for k ∈ [p] \ {j}. Therefore, on the event Ωj
r and conditional on ! j

z+⌊r⌋,b∗
,X1 = x1,… ,Xz = xz, the ran-

dom variable ‖Λ−j,j
b

‖22
!
j
z+⌊r⌋,b∗

∨1
=

‖Λ−j,j
b

‖22
!
j
z+⌊r⌋,b∗

 follows a non- central chi- squared distribution with p−1 degrees of 

freedom and noncentrality parameter ‖!−j‖22"
j
z+⌊r⌋,b∗

. Since j ∈   and s ≥ 2, we observe, by Equations 
(17) and (22) that ‖!−j‖22"

j
z+⌊r⌋,b∗

≥ #2 ⌊r ⌋∕6 on Ωj
r. Write

(20)r ≥

⎧
⎪
⎪
⎨
⎪
⎪
⎩

12

(
T̃
off

+

√
2(p − 1)T̃

off
)

!2
∨ 3q(")

⎫
⎪
⎪
⎬
⎪
⎪
⎭

+ 2 = :r0.

Ω
j
r :=

{
tj
z+⌊r⌋,b∗

> 2⌊r ⌋∕3
}
.

(21)ℙz,!

(
⋂

j∈"

(Ω
j
r)
c
||||||
X1= x1,… ,Xz = xz

)

≤exp
{
− |"|b

2
∗⌊r⌋∕12

}
≤exp{−"sb2∗⌊r⌋∕24}.

⌊r ⌋
3

<
tj
z+⌊r⌋, b∗

2
≤ !

j
z+⌊r⌋,b∗

≤

3tj
z+⌊r⌋,b∗

4
≤

3
(
tj
z, b∗

+ r
)

4
< r.

(22)2∕3 ≤ ⌊r ⌋∕3 < !
j
z+⌊r⌋, b∗

≤ ⌊r ⌋ .

(23)Λ
k,j
z+⌊r⌋,b∗

||||

{
!
j
z+⌊r⌋,b∗

,X1 = x1,… ,Xz = xz

}
ind
∼ 

(
"k!

j
z+⌊r⌋,b∗

, ! j
z+⌊r⌋,b∗

)

Ejr :=

⎧
⎪
⎨
⎪
⎩

‖Λ−j,j
z+⌊r⌋,b∗

‖22

!
j
z+⌊r⌋,b∗

∨ 1
< Toff

⎫
⎪
⎬
⎪
⎭

.
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Then by Birgé (2001, Lemma 8.1), we have

Combining Equations (21) and (24), we deduce that

where the last inequality uses Equation (20). Therefore, we have

where the penultimate inequality follows from the fact that 1 −Φ(x) ≤ 1
2
e−x

2∕2 for x ≥ 0. The desired 
bound Equation (19) follows by substituting in the expressions for r0 and b*.

The following two propositions control the residual tail length quantile term q(!) in Equation 
(19) in the worst- case and average- case scenarios, respectively.

Proposition 8 Let X1, X2,  . . .  , z, θ, s, a, p and N be defined as in Proposition 7. On the event 
{N > z}, we have

(24)

ℙz,!

(
Ejr ∩Ω

j
r | "

j
z+⌊r⌋,b∗

,X1= x1,… ,Xz = xz

)
≤exp

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−

(
#2⌊r⌋∕6− T̃off−

√
2(p−1)T̃off

)2

4
(
p−1+#2⌊r⌋∕3

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

ℙz,!

(
N > z+r | X1= x1,… ,Xz = xz

)
≤ℙz,!

(
N > z+⌊r⌋ ||X1= x1,… ,Xz = xz

)

≤ℙz,!

(
⋂

∈"

(Ωj
r)
c
||||||
X1= x1,… ,Xz = xz

)

+
∑

∈"

ℙz,!

(
Ejr ∩Ω

j
r
||X1= x1,… ,Xz = xz

)

≤exp

{

−
"sb2∗(r−1)

24

}

+p exp

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−

(
#2(r−1)∕6− T̃off−

√
2(p−1)T̃off

)2

4
(
p−1+#2(r−1)∕3

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

≤exp

{

−
"sb2∗(r−1)

24

}

+p exp

{

−
#4(r−1)2

576
(
p−1+#2(r−1)∕3

)

}

,

!z,!

{
(N −z)∨0|X1= x1,… ,Xz = xz

}
=
∫

∞

0
ℙz,!

(
N > z+u | X1= x1,… ,Xz = xz

)
du

≤ r0+∫

∞

r0−1

[

exp

{

−
"sb2∗u

24

}

+p exp

{

−
#4u2

576
(
p−1+#2u∕3

)

}]

∧1du

≤ r0+
24
"sb2∗

+
∫

∞

0

(
pe−#

2u∕384
)
∧1du+

∫

∞

0

(
pe

− #4u2

1152(p−1)

)
∧1du

≤ r0+
24
"sb2∗

+
384 log(ep)

#2
+
24
√
2(p−1) logp

#2
+
12
√
2$(p−1)

#2

≤ r0+
24
"sb2∗

+
384 log(ep)

#2
+
48
√
(p−1) log(ep)

#2
,

q(1;X1,… ,Xz , !) ≤
8Tdiags log2(2p)

"2
.
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Proof  We will show the stronger result that on the event {N > z}, we have

for all b ∈  and j ∈ [p]. The desired result then follows immediately by taking b = b* and restricting 
to the subset  ⊆ [p].

Fix b ∈  and j ∈ [p]. Recall from Equation (2) and Lemma 1 the definition of Rj
n,b

 and the 
recursive relation Rjn,b =

{
Rj
n−1,b

+ b(Xj
n − b∕2)

}
∨ 0. By the update procedure for tj

n,b
 in 

Algorithm 2 and Lemma 2, we have

We claim that

for all n ∈
{
z − tj

z,b
,… , z

}
. To see this, the claim is true when n = z − tj

z,b
 since the right hand side 

of Equation (26) is 0 by Equation (25). Now, assume Equation (26) is true for some n = m − 1. Then,

This proves the claim by induction. In particular, on the event {N  >  z}, we have 
Tdiag > Rj

z,b∕2
> b2tj

z,b
∕8 as desired.

Proposition 9 Let X1, X2, . . . , z, θ, s, a, p and N be defined as in Proposition 7. There exists a uni-
versal constant C and !0(s) > 0, depending only on s, such that for all ! < !0(s), we have

Proof  Recall the definition of b∗ in Equation (17). We may assume without loss of generality that 
b∗ = !∕

√
s log2(2p) (the case b∗ = − !∕

√
s log2(2p) can be proved in essentially the same way). We 

first prove the result for sufficiently large s > s0. Recall that tj
z,b∗

= argmax0≤r≤z
∑z

i=z−r+1 (X
j
i − b∗∕2). 

Define Zi := Xz−i+1 for i ∈ [z] and let Zz+1,Zz+2,…
iid
∼p(0, Ip) be independent from Z1, … , Zz. For 

each j ∈ [p], let

tj
z,b

<
8Tdiag

b2

(25)Rj
n,b

{
=0 when n= z− tj

z,b
,

> 0 when z− tj
z,b

< n≤ z.

(26)Rj
n,b∕2

≥

Rj
n,b

2
+
b2(n − z + tj

z,b
)

8
,

Rj
m,b∕2

≥ Rj
m−1,b∕2

+
b
2

(
Xj
m−

b
4

)
≥

Rj
m−1,b

2
+
b2(m−1−z+ tj

z,b
)

8
+
b
2

(
Xj
m−

b
4

)

=
Rj
m,b

2
+
b2(m−z+ tj

z,b
)

8
.

!z,!

{
q(s−1∕2;X1,… ,Xz , !)

}
≤
Cs1∕2 log(16s2"−2 log2(2p)) log2(2p)

"2
.

Sjr :=
r∑

i=1

(
Zji − b∗∕2

)
and S̃jr :=

r∑

i=1

Zji
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for r ∈ ℕ and define Sj0 := S̃j0 := 0. Writing !j0 := argmax0≤r≤Δb−2∗ S
j
r, !j := argmaxr∈ℕ0S

j
r, and 

!̃
j
0 := argmax0≤r≤Δb−2∗ S̃jr, where Δ := 8 log(2s), we note that like tj

z,b∗
, these three maxima are also 

uniquely attained almost surely (see the proof of Lemma 6). By construction, we have for each j ∈ [p] 
that

Writing q!(") := inf
{
y : |{j ∈  : !j ≤ y}| ≥ "| |

}
 as the empirical !- quantile of (!j : j ∈  ), it 

follows that q(!) ≤ qξ(!) and so it suffices to control !{q!(s−1∕2)} instead of !{q(s−1∕2)}. To this 
end, we observe that 

{
16Δs−1∕2b2∗ < !j≤Δb−2∗

}
⊆
{
16Δs−1∕2b−2∗ < !

j
0
≤Δb−2∗

}
 and !̃j0 ≥ !

j
0, and 

thus

For the first term on the right hand side of Equation (27), by Donsker's invariance principle and the 
continuity of the argmax map (see, e.g. van der Vaart & Wellner, 1996, Lemma 3.2.1 and Theorem 
3.2.2), we have in the limit !↘0 that Δb−2∗ →∞ and so

where (Bt)t ≥ 0 denotes a standard Brownian motion. In particular, we can find !0(s) > 0 depending 
only on s such that for ! ≤ !0(s) and s > 256, we have

where in the second step we used the arcsine law for Brownian motion (see, e.g. Mörters & Peres, 
2010, Theorem 5.26), and in the final step we used the fact that 4s−1/4 < 1.

For the second term on the right- hand side of Equation (27), since Δ = 8 log(2s), for suffi-
ciently large s ≥ s0 and sufficiently small ! ≤ !0(s), we have by Lemma 6(d) that

Substituting Equations (28) and (29) into Equation (27), we have, for all j ∈  , that

tj
z,b∗

= argmax
0≤ r≤ z

z∑

i=z−r+1

(
Xj
i − b∗∕2

)
= argmax

0≤ r≤ z
Sjr ≤ argmax

r∈ℕ0

Sjr = !
j.

(27)
ℙ
(
!j≤16Δs−1∕2b−2∗

)
≥ ℙ

(
!
j
0≤16Δs

−1∕2b−2∗

)
−ℙ

(
!j > Δb−2∗

)

≥ ℙ

(
!̃
j
0≤16Δs

−1∕2b−2∗

)
−ℙ

(
!j > Δb−2∗

)
.

!̃
j
0

Δb−2∗

d
→argmax

t∈ [0,1]
Bt ,

(28)ℙ

(
!̃
j
0 ≤ 16Δs−1∕2b−2∗

)
≥
1
2
ℙ

(

argmax
t∈ [0,1]

Bt ≤ 16s−1∕2
)

=
1
"
arcsin(4s−1∕4) ≥

4s−1∕4

"
,

(29)ℙ(!j > Δb−2∗ ) ≤ 2e−Δ∕8 = s−1.

ℙ
(
!j ≤ 16Δs−1∕2b−2∗

)
≥ s−1∕4.
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As a result, |||
{
j ∈  : !j ≤ 16Δs−1∕2b−2∗

}||| is stochastically larger than Bin
(
| |, s−1∕4

)
. Thus, for 

s ≥ s0, we have,

where we have used Hoeffding's inequality and the fact that | | ≥ s∕2 in the last step. On the other 
hand, for sufficiently large s ≥ s0 and sufficiently small ! ≤ !0(s), we have,

where we have used Lemma 7(b) in the second inequality and Lemma 6(d) (with Δ/4 taking the role 
of k and b*/2 taking the role of b there) in the final inequality. As a result,

where we have used in the final step the fact that e−s1∕2∕2 ≤ s−1∕2∕100 for sufficiently large s. This 
proves the desired result for s ≥ s0.

Finally, for s ≤ 256, we have by Lemma 6(c) that, for ! <
√
s∕2,

and the desired bound then follows.
We are now in a position to prove Theorem 2.

Proof of Theorem 2 The proof proceeds with different arguments for the case s ≥ 2 and the case s = 1.

Case 1: s ≥ 2. Combining Propositions 7 (applied with ! = 1) and 8, we have

The desired bound Equation (6) then follows by substituting in the expression for T̃off. On the other 
hand, combining Propositions 7 (applied with ! = s−1/2) and 9, we have

which proves Equation (7).

ℙz,!

{
q"(s

−1∕2) > 16Δs−1∕2b−2∗
}
≤ ℙ

{
Bin

(
| |, s−1∕4

)
≤ s−1∕2| |

}
≤ e−s

1∕2∕2,

!z,!

{
q"(s

−1∕2) |||q" (s
−1∕2)>16Δs−1∕2b−2∗

}
≤!z,!

{
q"(s

−1∕2) |||q" (s
−1∕2) ≥ Δb−2∗

}

≤!z,!

{
q"(1)

|||q" (| |−1) ≥ Δb−2∗

}
=!z,!

{
max
j∈

"j
||||
min
j∈

"j ≥ Δb−2∗

}
≤
61

(
Δ+4 log(2∕b∗)

)

b2∗
,

!z,!

{
q(s−1∕2)

}
≤!z,!

{
q"(s

−1∕2)
}
≤16Δs−1∕2b−2∗ +61e−s

1∕2∕2 (Δ+4 log(2∕b∗)
)
b−2∗

≤
Cs1∕2 log(16s2#−2 log2(2p)) log2(2p)

#2
,

!z,!

{
q(s−1∕2)

}
≤!z,!

{
max
j∈

"j
}

≤
32s log(s3∕2#−1 log1∕22 (2p)) log2(2p)

#2

≤
Cs1∕2 log(16s2#−2 log2(2p)) log2(2p)

#2
,

!
wc
! (N) ≤

396T̃off + 65
√
pT̃off

"2
+
24 log2(2p)

#2
+
24Tdiags log2(2p)

#2
+ 2.

!!(N) ≤
396T̃off + 65

√
pT̃off

"2
+
24
√
s log2(2p)

#2
+
3Cs1∕2 log(16s2#−2 log2(2p)) log2(2p)

#2
+ 2,
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Case 2: s  =  1. There exists j∗ ∈ [p] such that |!j∗ | ≥ "∕
√
log2(2p), and recall from 

Equation (17) that b∗ := sgn(!j∗)"∕
√
log2(2p) ∈ . Note that Sdiagn,1 =max(j,b)∈[p]×(∪0)R

j
n,b

≥ R
j∗
n,b∗

. 
We define Rn :=

∑z+n
i=z+1 b∗(X

j∗
i − b∗∕2) for n ∈ ℕ0. Since R

j∗
z,b∗

≥ 0 = R0 and 
Rn − Rn−1 = b∗(X

j∗
z+n − b∗∕2) ≤ R

j∗
z+n,b∗

− R
j∗
z+n−1,b∗

, it follows by induction that Rj∗
z+n,b∗

≥Rn for all 
n ∈ ℕ0. Then, for n ≥ ⌈4Tdiag∕(b∗!

j∗)⌉ = : n0, we have

Therefore,

After substituting in the expressions for b*, !j∗ and T diag, we see that

which proves both Equations (6) and (8).

5.2 | Proofs from Sections 3.2 and 3.3

Proof of Theorem 3 It suffices to only prove ℙ0(Noff ≤m) ≤ 1∕4, since the remaining proof is 
identical to that of Theorem 1.

Since Λk,j
b
|! j
b

iid
∼ (0, ! j

b
) for all b ∈ , j ∈ [p] and k ∈ [p] \ {j} under the null, by the fact that 

Toff ≥ 12 and Lemma 10, we have

Hence, it follows that

as desired.

Proof of Theorem 4 We note that the case s = 1 in the proof of Theorem 2 does not rely on the 
off- diagonal statistics. Hence Equation (30) is still valid here with a =

√
8 log(p − 1) and the last 

expression in Equation (30) again proves the desired bound (Equation 9). For the case s ≥ 2, we 
follow exactly the proof of Proposition 7 until Equation (23), with the only exception that we now 
fix, instead of Equation (20),

ℙz,!(N > z+n|X1= x1,… ,Xz = xz) ≤ℙz,!

(
R
j∗
z+n,b∗

≤Tdiag | X1= x1,… ,Xz = xz

)

≤ℙz,!

(
Rn≤T

diag) =Φ

(
−
b∗n(!

j∗ −b∗∕2)−T
diag

n1∕2b∗

)

≤
1
2
exp

{
−
(b∗n!

j∗∕2−Tdiag)2

2nb2∗

}
≤
1
2
e−n(!

j∗ )2∕32.

(30)
!z,!

{
(N −z)∨0 |X1= x1,… ,Xz = xz

}
=

∞∑

n=0

ℙz,!(N > z+n |X1= x1,… ,Xz = xz)

≤n0+
1
2

∞∑

n=n0

e−n(!
j∗ )2∕32

≤n0+
1
2 ∫

∞

0
e−u(!

j∗ )2∕32du≤1+
4Tdiag

b∗!
j∗

+
16

(!j∗)2
.

!!(N) ≤ !
wc
! (N) ≤ 1 +

4 log(16p" log2(4p)) log2(2p)

#$
+
16 log2(2p)

$2
,

ℙ0

(
Qj
n,b

≥ Toff||| !
j
n,b

)
≤ℙ0

(
Qj
n,b

≥ 6+Toff∕2||| !
j
n,b

)
≤exp(−Toff∕8).

(31)ℙ0(N
off

≤m) ≤ ||mpe−T
off∕8

≤ 1∕4,
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By the definition of the effective sparsity of θ, for a fixed j ∈ !,

has cardinality at least s − 1. On the event Ωj
r, we have, by Equation (22), that for all k ∈ j,

We then observe, by Equation (32), that

Now, from Equation (23) we have on the event Ωj
r that, for all k ∈ j,

We denote

Then, by the Chernoff– Hoeffding binomial tail bound (Hoeffding, 1963, Equation (2.1)), we have

where the penultimate inequality follows from Equation (33). Now, on the event 
Ω
j
r ∩

{
Uj < |j|∕2

}
 , we have

(32)r ≥

{
24Toff log2(2p)

!2
∨
96s log2(2p) logp

!2
∨ 3q(")

}
+ 2 = : r̃0.


j :=

{

j′ ∈ [p] : |!j
′
| ≥ "

√
s log2(2p)

and j′ ≠ j

}

|!k|
√
"
j
z+⌊r⌋,b∗

≥

√
#2 ⌊r ⌋

3s log2(2p)
= : ãr .

(33)ãr ≥
√
32 logp > 2a.

ℙz,!

(
Ω
j
r ∩

{
|Λk,j

z+⌊r⌋,b∗
|< 1

2
ãr

√
"
j
z+⌊r⌋,b∗

}
| " j

z+⌊r⌋,b∗
,X1= x1,… ,Xz = xz

)
≤
1

2
e−ã

2
r∕8=: qr .

Uj :=
|||||

{
k ∈ 

j :

{
|||Λ

k,j
z+⌊r⌋,b∗

||| <
1

2
ãr

√
!
j
z+⌊r⌋,b∗

}}|||||
.

(34)

ℙz,!

(
Ω
j
r ∩

{
Uj

≥ |j |∕2
} |||"

j
z+⌊r⌋,b∗

,X1= x1,… ,Xz = xz

)
≤exp

{
−
|j|
2
log

(
1

4qr(1−qr)

)}

≤exp

{

|j|

(
log 2

2
−
ã2r
16

)}

≤exp

{

−
3|j|ã2r
64

}

≤exp

{
−

#2⌊r⌋
128 log2(2p)

}
,

(35)

∑

j′∈[p] :j′≠j

(
Λ
j′,j
z+⌊r⌋,b∗

)2

!
j
z+⌊r⌋,b∗

∨1
!{

|Λj
′ ,j
z+⌊r⌋,b∗

|≥ a

√
!
j
z+⌊r⌋,b∗

} ≥
∑

j′∈[p] :j′≠j

(
Λ
j′,j
z+⌊r⌋,b∗

)2

!
j
z+⌊r⌋,b∗

∨1
!{

|Λj
′ ,j
z+⌊r⌋,b∗

|≥ ãr
2

√
!
j
z+⌊r⌋,b∗

}

≥
ã2r
4

{
|j|−

(⌈
|j|
2

⌉
−1

)}
=
ã2r
4

⌈
|j|+1

2

⌉

≥
"2⌊r⌋

24 log2(2p)
≥ Toff,
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where the penultimate inequality uses the fact that |j| ≥ s − 1 and the last inequality follows from 
Equation (32). We now denote

Combining Equations (21), (34) and (35), we deduce that

Therefore we have

Combining this with Proposition 8 (applied with ! = 1), we have, by substituting in the expression 
for T off, that

for some universal constant C > 0, as desired.

Proof of Theorem 5 Let Toff,d = !(T̃off,d). Then, similar to Equations (15), (16) and (31), we have

Ẽjr :=

⎧
⎪
⎨
⎪
⎩

∑

j′ ∈ [p] :j′≠ j

(
Λ
j′,j
z+⌊r⌋,b∗

)2

!
j
z+⌊r⌋,b∗

∨ 1
!{

|Λj
′ ,j
z+⌊r⌋,b∗

|≥ a

√
!
j
z+⌊r⌋,b∗

} < Toff
⎫
⎪
⎬
⎪
⎭

.

ℙz,!

(
N > z+r | X1= x1,… ,Xz = xz

)
≤ℙz,!

(
N > z+⌊r⌋ | X1= x1,… ,Xz = xz

)

≤ℙz,!

(
⋂

j∈"

(Ωj
r)
c
||||||
X1= x1,… ,Xz = xz

)

+
∑

j∈"

ℙz,!

(
Ẽjr ∩Ω

j
r | X1= x1,… ,Xz = xz

)

≤ℙz,!

(
⋂

j∈"

(Ωj
r)
c
||||||
X1= x1,… ,Xz = xz

)

+

∑

j∈"

ℙz,!

(
Ω
j
r ∩

{
Uj

≥ |j|∕2
}|||X1= x1,… ,Xz = xz

)

≤exp

{

−
"sb2∗(r−1)

24

}

+p exp

{
−

#2(r−1)

128 log2(2p)

}
.

!z,!

{
(N −z)∨0 | X1= x1,… ,Xz = xz

}
=
∫

∞

0
ℙz,!

(
N > z+u | X1= x1,… ,Xz = xz

)
du

≤ r̃0+∫

∞

r̃0−1

[

exp

{

−
"sb2∗u

24

}

+p exp

{
−

#2u
128 log2(2p)

}]

∧1du

≤ r̃0+
24
"sb2∗

+
∫

∞

0

(
pe

− #2u
128log2(2p)

)
∧1du≤ r̃0+

24
"sb2∗

+
128 log2(2p) log(ep)

#2

≤
24Toff log2(2p)+96s log2(2p) logp

#2
+3q(")+

24 log2(2p)

"$2
+
128 log2(2p) log(ep)

#2
+2.

!!(N) ≤ !
wc
! (N) ≤ C

{
s log (ep ") log (ep)

#2
∨ 1

}
,

ℙ0(N
diag

≤m)≤mp|∪0|e
−Tdiag

≤1∕6,

ℙ0(N
off,d

≤m)≤mp||e−T̃
off,d

∕2
≤1∕6,

ℙ0(N
off,s

≤m)≤mp||e−T
off,s∕8

≤1∕6.
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Hence,

as desired.

Proof of Theorem 6 We observe that

and similarly for !!(N). The desired bounds Equations (10), (11) and (12) are therefore direct conse-
quences of Theorems 2 and 4 (note that the different constants in the thresholds only affect the value 
of the universal constant).
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This is the online supplementary material for the main paper Chen, Wang and Samworth (2022),
hereafter referred to as the main text. We present various auxiliary lemmas used for the proofs of our
main theorems.

Lemma 1. For n 2 N0, b 2 B[B0 and j 2 [p], we define R
j
n,b := bA

j,j
n,b� b

2
t
j
n,b/2, where An,b and

tn,b are taken from Algorithm 2 in the main text. Then

R
j
n,b = max

0hn

nX

i=n�h+1

b(Xj
i � b/2). (1)

Proof. We prove the claim by induction on n. The base case n = 0 is true since, by definition,
R

j
0,b = 0 and the sum on the right-hand side of (1) is empty. Assume (1) is true for n = m� 1. Then,

by the update procedure in Algorithm 2 in the main text, we have

R
j
m,b =

�
R

j
m�1,b + b(Xj

m � b/2)
 
_ 0 =

⇢
max

0hm�1

m�1X

i=m�h

b(Xj
i � b/2) + b(Xj

m � b/2)

�
_ 0

=

⇢
max

0hm�1

mX

i=m�h

b(Xj
i � b/2)

�
_ 0 = max

0hm

mX

i=m�h+1

b(Xj
i � b/2),

and the desired result follows.

Lemma 2. For n 2 N0, b 2 B [ B0 and j 2 [p], let tjn,b be defined as in Algorithm 2 in the main

text and R
j
n,b as in Lemma 1. Then

t
j
n,b = min

�
0  i  n : Rj

n�i,b = 0
 
= sargmax

0hn

nX

i=n�h+1

b(Xj
i � b/2). (2)

Proof. We observe from the procedure in Algorithm 2 in the main text that R
j
n,b = 0 if and

only if tjn,b = 0 and that Rj
n,b > 0 if and only if tjn,b = t

j
n�1,b + 1. Hence,

t
j
n,b = n�max

�
0  i  n : Rj

i,b = 0
 
= min

�
0  i  n : Rj

n�i,b = 0
 
.

We now prove that t
j
n,b = sargmax0hn

Pn
i=n�h+1 b(X

j
i � b/2) by induction on n. The base case

n = 0 is true because t
j
n,b = 0, and the sum on the right-hand side of (2) is empty. Assume the claim
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Email: t.wang59@lse.ac.uk



2 Y. Chen, T. Wang and R. J. Samworth

is true for n = m� 1. Then, by the inductive hypothesis and Lemma 1,

t
j
m,b = (tjm�1,b + 1) {Rj

m,b>0} =

✓
sargmax
0hm�1

m�1X

i=m�h

b(Xj
i � b/2) + 1

◆
{Rj

m,b>0}

=

✓
sargmax
1hm

mX

i=m�h+1

b(Xj
i � b/2)

◆
�
max0hm

Pm
i=m�h+1 b(X

j
i �b/2)>0

 

= sargmax
0hm

mX

i=m�h+1

b(Xj
i � b/2),

and the desired result follows.

For two distributions P0 and P1 on the same measurable space, the sequential probability ratio test

of H0 : X1, X2, . . .
iid⇠ P0 against H1 : X1, X2, . . .

iid⇠ P1 with log-boundaries a > 0 and b < 0 is defined
as the (extended) stopping time

N := inf

⇢
n :

nX

i=1

log
dP1

dP0
(Xi) 62 (b, a)

�
,

together with the decision rule after stopping that accepts H0 if
PN

i=1 log{(dP1/dP0)(X)}  b and

accepts H1 if
PN

i=1 log{(dP1/dP0)(X)} � a.

Lemma 3. Suppose N is the stopping time associated with the (one-sided) sequential probability

ratio test of H0 : X1, X2, . . .
iid⇠ P0 against H1 : X1, X2, . . .

iid⇠ P1 with log-boundaries a > 0 and
b = �1. Then

P0(N < 1)  e
�a

.

Proof. Let Ln :=
Qn

i=1(dP1/dP0)(Xi). On the event {N < 1}, we have LN � e
a. Therefore,

P0(N < 1) =
1X

n=1

P0(N = n)  e
�a

1X

n=1

E0(Ln {N=n}) = e
�a

1X

n=0

P1(N = n)  e
�a

,

which proves the desired result.

Lemma 4. Let X, Y and Z be real-valued random variables. Assume that (X,Y ) and Z are
independent. Let PZ|ZY be the conditional distribution of Z given Z  Y . Then

P(X � Z | Y � Z) =

Z

R
P(X � u | Y � u) dPZ|ZY (u).

Proof. Let PY and PZ denote the marginal distribution of Y and Z respectively. Then, by the
definition of PZ|ZY , we have

PZ|ZY

�
[u,1)

�
= P(Z � u | Z  Y ) =

P(Y � Z � u)

P(Y � Z)
=

R
R2 {y�z�u} dPY (y)dPZ(z)

P(Y � Z)

=

R1
u P(Y � z) dPZ(z)

P(Y � Z)
,

where we have used the assumption that Y and Z are independent in the penultimate equality. Hence,
Z

R
P(X � u | Y � u) dPZ|ZY (u) =

Z

R
P(X � u | Y � u)

P(Y � u)

P(Y � Z)
dPZ(u)

=

R
R P(X � u, Y � u) dPZ(u)

P(Y � Z)
=

P(X � Z, Y � Z)

P(Y � Z)

= P(X � Z | Y � Z),

where we have used the assumption that (X,Y ) and Z are independent in the penultimate equality.
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The proof of Lemma 6 below relies on the following result, due to Groeneboom (1989). It involves the
Airy function Ai, defined for x 2 R by

Ai(x) :=
1

⇡
lim
b!1

Z b

0
cos

✓
t
3

3
+ xt

◆
dt.

Lemma 5 (Corollary 3.4 of Groeneboom 1989). Let (Wt)t2R be a two-sided standard Brow-
nian motion and Z := argmaxt2R(Wt � t

2). Then Z has a density fZ on R which is symmetric about
zero, and which satisfies

fZ(z) =
1

2

44/3|z|
Ai0(ã1)

exp
⇣
�2

3
|z|3 + 21/3ã1|z|

⌘
{1 + o(1)}

as z ! 1, where ã1 ⇡ �2.3381 is the largest zero of the Airy function Ai and where Ai0(ã1) ⇡ 0.7022.
In particular, there exists a universal constant K � 1 such that fZ(z) � ze

�z3

for z � K
1/3.

We collect in the following lemma some useful bounds on both the maximum and the argmax of
a Brownian motion and a Gaussian random walk with a negative drift.

Lemma 6. Fix b > 0, and let (Zt)t�0 be given by Zt = Wt � bt for t � 0, where (Wt)t�0 is a
standard Brownian motion. Define M̂ := supt�0 Zt and M := supr2N0

Zr.

(a) For any a � 0, we have

2
p
abp

2⇡(4ab+ 1)
e
�2ab  P(M̂ � a)  e

�2ab

and

3
p

ab/2p
2⇡(9ab/2 + 1)

e
�9ab/4

{a�b} +
2bp

2⇡(4b2 + 1)
e
�2b2

{a<b}  P(M � a)  e
�2ab

.

(b) If c � 0 satisfies bc � a � 0, then

P
⇣

sup
r2N:r�c

Zr � a

⌘
 P

⇣
sup
t�c

Zt � a

⌘
 exp

⇢
�(bc+ a)2

2c

�
.

Now let ⇠̂ := argmaxt�0 Zt and ⇠ := argmaxr2N0
Zr. Then ⇠̂ and ⇠ are both almost surely unique.

Moreover, letting ⇠
1
, . . . , ⇠

s denote independent copies of ⇠, we have the following results:

(c) If b  1/2, then

E
⇣
max
j2[s]

⇠
j
⌘
 8 log(s/b)

b2
.

(d) Taking K � 1 from Lemma 5, for all k � K we have

e
�2k  P(⇠̂ � kb

�2)  e
�k/2

.

Moreover, for each k � K, there exists b0 > 0, depending only on k, such that for all b  b0 we
have

1

2
e
�2k  P(⇠ � kb

�2)  2e�k/2 (3)

and

E
⇣
max
j2[s]

⇠
j
��� min
j2[s]

⇠
j � kb

�2
⌘
 60

b2

�
k + log(1/b)

 
+ sb

5
.
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Proof. (a) Since M  M̂ , we have

P(M � a)  P(M̂ � a) = P
⇣
sup
t�0

(Wt � bt) � a

⌘
= e

�2ab
,

where the calculation for the final equality can be found in, e.g. Siegmund (1986, Proposition 2.4 and
Equation (2.5)). For the lower bounds, we note that

P(M̂ � a) � sup
t�0

P(Zt � a) = sup
t�0

�

✓
�a+ btp

t

◆
= �

�
�2

p
ab
�
.

Similarly, assuming without loss of generality that a > 0 (since otherwise the result is clear),

P(M � a) � sup
r2N

P(Zr � a) = sup
r2N

�

✓
�a+ brp

r

◆
� �

✓
�a+ br0p

r0

◆
,

where r0 = da/be _ 1. If a � b, then using the fact that the function x 7! (a+ bx)/
p
x is increasing on

[
p

a/b,1), we have

a+ br0p
r0

 a+ b(a/b+ 1)p
a/b+ 1

= 2
p
b · a+ b/2p

a+ b
 2

p
b

✓
a+

b
2
/4

a+ b

◆1/2

 3
p

ab/2.

On the other hand, if a < b, then
a+ br0p

r0
= a+ b < 2b.

The desired results follow from the bound �(�x) � xp
2⇡(x2+1)

e
�x2/2 for all x > 0.

(b) By part (a), we have

P
⇣

sup
r2N:r�c

Zr � a

⌘
 P

⇣
sup
t�c

Zt � a

⌘
=

Z 1

�1
P
⇣
sup
t�c

Zt � a | Zc = x

⌘ 1p
2⇡c

e
�(x+bc)2/(2c)

dx


Z a

�1
e
�2(a�x)b 1p

2⇡c
e
�(x+bc)2/(2c)

dx+

Z 1

a

1p
2⇡c

e
�(x+bc)2/(2c)

dx

= e
�2ab�

✓
�bc� ap

c

◆
+ �

✓
�bc+ ap

c

◆
 exp

⇢
�(bc+ a)2

2c

�
,

where in the final step we have used the fact that bc � a and �(�x)  e
�x2/2

/2 for x � 0.

To prove that ⇠ is almost surely unique, it su�ces to note that

P(⇠ not unique)  P
✓ [

r1,r22N0:r1<r2

{Zr1 = Zr2}
◆


X

r1,r22N0:r1<r2

P
⇣
Zr2 � Zr1 = 0

⌘
= 0,

since Zr2 � Zr1 ⇠ N
�
�b(r2 � r1), r2 � r1

�
. To prove that ⇠̂ is almost surely unique, note that

P(⇠̂ not unique)  P
✓ [

q1,q22Q:0<q1<q2

n
max
t2[0,q1]

Zt = max
t2[q2,1)

Zt

o◆


X

q1,q22Q:0<q1<q2

P
⇣
max
t2[0,q1]

Zt = max
t2[q2,1)

Zt

⌘

=
X

q1,q22Q:0<q1<q2

P
✓⇣

max
t2[q2,1]

Zt � Zq2

⌘
=
�
Zq2 � Zq1

�
�
⇣
max
t2[0,q1]

Zt � Zq1

⌘◆
= 0,

where we have used the Markov property of (Zt)t�0 for the final equality.
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(c) For any x 2 N, we have by two union bounds that

P
⇣
max
j2[s]

⇠
j � x

⌘
 s

1X

r=x

P(⇠ = r)  s

1X

r=x

P(Sr � 0)

= s

1X

r=x

�(�b
p
r)  s

2

1X

r=x

e
�rb2/2 =

se
�xb2/2

2(1� e�b2/2)
.

Now define x0 := d4b�2 log(s/b)e. Then for b 2 (0, 1/2],

E
⇣
max
j2[s]

⇠
j
⌘
=

1X

x=1

P
⇣
max
j2[s]

⇠
j � x

⌘
 x0 � 1 +

1X

x=x0

se
�xb2/2

2(1� e�b2/2)

 4 log(s/b)

b2
+

se
�x0b2/2

2(1� e�b2/2)2
 4 log(s/b)

b2
+

2

b2(1� 1/16)2

 8 log(s/b)

b2
,

where we have used the fact that 1� e
�x � 15x/16 for x 2 [0, 1/8].

(d) First note that Wt � b
3
t
2
/k  Wt � bt for t � kb

�2 and Wt � b
3
t
2
/k > Wt � bt for t < kb

�2. Thus,

using the fact that (Wt)t�0
d
=
�
a
�1

Wa2t

�
t�0

for every a > 0, and taking K � 1 from Lemma 5, we
have for k � K that

P(⇠̂ � kb
�2) = P

✓
argmax

t�0
(Wt � bt) � k

b2

◆
� P

 
argmax

t�0

✓
Wt �

b
3
t
2

k

◆
� k

b2

!

= P
 
argmax

t�0

✓
Wb2k�2/3t

bk�1/3
� b

3
t
2

k

◆
� k

b2

!
= P

✓
argmax

t�0
(Wt � t

2) � k
1/3

◆

�
Z 1

k1/3

2z exp(�z
3) dz �

Z 1

k1/3

✓
3z

2
+

1

2z2

◆
exp(�z

3) dz =
e
�k

2k1/3
� e

�2k
, (4)

where the second inequality follows from Lemma 5. We also have, by part (b), that

P(⇠̂ � kb
�2) = P

✓
argmax

t�0
(Wt � bt) � kb

�2

◆
 P

✓
sup

t�kb�2

(Wt � bt) � 0

◆
 e

�k/2
. (5)

We now compute upper and lower bounds on the tail probabilities for ⇠. By Donsker’s invariance
principle (Mörters and Peres, 2010, Theorem 5.22) and the continuity of the argmax map (e.g. van
der Vaart and Wellner, 1996, Theorem 3.2.2), we have, as b ! 0, that

b
2
⇠

d
= b

2 argmax
r2N0

✓
Wrb2 � rb

2

b

◆
d
= argmax

r2b2N0

(Wr � r)
d! argmax

t�0
(Wt � t).

Thus there exists b0 > 0, depending only on k, such that for b < b0, we have by (4) and (5) that

P(⇠ � kb
�2) � 1

2
P
✓
argmax

t�0
(Wt � t) � k

◆
� 1

2
e
�2k

,

and that

P(⇠ � kb
�2)  2P

✓
argmax

t�0
(Wt � t) � k

◆
 2e�k/2

.

We now move on to the final claim of Lemma 6(d). For r 2 N0, define Mr := maxr02{0,1,...,r} Zr0

and let Pr denote the conditional distribution of Zr � Mr given that ⇠ � r. Note that {⇠ � r} =
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{maxr02N0:r0�r Zr0 � Mr} up to a null set. Denote x0 := b60{k + log(1/b)}/b2c and c := dkb�2e.
Without loss of generality, we may assume that b0 < 1/2. Then for b  b0, we have c < x0, so

E
⇣
max
j2[s]

⇠
j
��� min
j2[s]

⇠
j � c

⌘
� x0 

1X

x=x0

P
⇣
max
j2[s]

⇠
j � x

��� min
j2[s]

⇠
j � c

⌘
 s

1X

x=x0

P
⇣
⇠
1 � x

��� min
j2[s]

⇠
j � c

⌘

= s

1X

x=x0

P(⇠ � x)P(⇠ � c)s�1

P(⇠ � c)s
= s

1X

x=x0

P(⇠ � x | ⇠ � c).

But, for every x 2 N with x � x0,

P(⇠ � x | ⇠ � c)  P
⇣

sup
r2N:r�x

Zr � Mc

��� sup
r2N:r�c

Zr � Mc

⌘

= P
⇣

sup
r2N:r�x

(Zr � Zc) � Mc � Zc

��� sup
r2N:r�c

(Zr � Zc) � Mc � Zc

⌘

=

Z 1

0
P
⇣

sup
r2N:r�x

(Zr � Zc) � u

��� sup
r2N:r�c

(Zr � Zc) � u

⌘
dPc(u)

=

Z 1

0
P
⇣

sup
r2N:r�x�c

Zr � u

���M � u

⌘
dPc(u), (6)

where the second equality follows from Lemma 4 and the fact that Mc � Zc is independent of the
sequence (Zr � Zc)r2N:r�c. If b(x� c)/4 � u � b, then by Lemma 6(a) and (b) we have

P
⇣

sup
r2N:r�x�c

Zr � u

���M � u

⌘
 exp

⇢
�(b(x� c) + u)2

2(x� c)

�
· 9ub/2 + 1

3
p

ub/(4⇡)
e
9ub/4

 e
�b2(x�c)/2+5bu/4

✓
3
p
⇡ub+

2
p
⇡/3p
ub

◆

 e
�3b2(x�c)/16

✓
3
p
⇡

2

p
(x� c)b2 +

2
p
⇡

3b

◆
.

Since the function h 7! he
�h2/2 is decreasing for h � 1, we have that 3

p
⇡(x� c)b2/4 + 2

p
⇡/(3b) 

3eb
2(x�c)/16

/2 for x� c � 60b�2 log(1/b), when b  1/2. Thus,

P
⇣

sup
r2N:r�x�c

Zr � u

���M � u

⌘
 3

2
e
�b2(x�c)/8

. (7)

On the other hand, if b > u (note that this implies b(x � c) � u), then by Lemma 6(a) and (b) we
have that

P
⇣

sup
r2N:r�x�c

Zr � u

���M � u

⌘
 exp

⇢
�(b(x� c) + u)2

2(x� c)

�
·
p
2⇡(1 + 4b2)

2b
e
2b2

 e
�b2(x�c)/2+2b2

✓p
2⇡

2b
+ 2

p
2⇡b

◆


p
2⇡

b
e
�b2(x�c)/4 

p
2⇡

213/2
e
�b2(x�c)/8

,

where we have used the fact that x� c � 60b�2 log(1/b) � 8 in the final two bounds. Combining the
above display with (7), we see that for b(x� c)/4 � u, we have

P
⇣

max
r2N:r�x�c

Zr � u

���M � u

⌘
 3

2
e
�b2(x�c)/8

. (8)
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Thus, by reducing b0 > 0 (still depending only on k) if necessary, we have for b  b0 that
Z 1

0
P
⇣

sup
r2N:r�x�c

Zr � u

���M � u

⌘
dPc(u)


Z b(x�c)/4

0
P
⇣

sup
r2N:r�x�c

Zr � u

���M � u

⌘
dPc(u)

+ P
✓
Mc �

b(x� c)

8

���� ⇠ � c

◆
+ P

✓
Zc  �b(x� c)

8

���� ⇠ � c

◆

 3

2
e
�b2(x�c)/8 + 2e�b2(x�c)/4

e
2k + 2�

✓
�b(x� 9c)

8
p
c

◆
e
2k  5e�(b2x�k)/8

,

where we have used (8), Lemma 6(a) and (3) in the penultimate inequality, and, in the final step, we
have used the fact that x � 60c, the Gaussian tail bound �(�x)  1

2e
�x2/2 for x � 0 and the fact that

(x� 9c)2

c
� (51/59)2(x� c)2

c
� 59(51/59)2(x� c) � 32(x� c).

Combining with (6), we conclude that

E
⇣
max
j2[s]

⇠
j
��� min
j2[s]

⇠
j � kb

�2
⌘
� x0  5s

1X

x=x0

e
�(b2x�k)/8  5se�15 log(1/b)/2�7

1� e�b2/8
 sb

5
,

as desired, where we have used again the fact that b  1/2 in the final inequality.

Lemma 7. (a) For any n 2 N, 0 < p  q < 1 and x 2 {0, 1, . . . , n}, we have

P
�
Bin(n, p) � x

�

P
�
Bin(n, p/q) � x

�  P
�
Bin(n, q) � x

�
. (9)

(b) Let W1, . . . ,Wn be independent and identically distributed, real-valued random variables, with cor-
responding order statistics W(1)  . . .  W(n). Then for every s � t and every m 2 [n], we have
that

P(W(m) � s|W(m) � t)  P(W(m) � s|W(1) � t).

In particular, E(W(m)|W(m) � t)  E(W(m)|W(1) � t).

Proof. (a) Let g(p) denote the left-hand side of (9). It su�ces to prove that g is an increasing
function on (0, q]. We may also assume that x � 1, because otherwise the result is clear. Now, let

h(p) := P
�
Bin(n, p) � x

�
=

nX

r=x

✓
n

r

◆
p
r(1� p)n�r

.

Then

h
0(p) =

nX

r=x

✓
n

r

◆
rp

r�1(1� p)n�r �
n�1X

r=x

✓
n

r

◆
(n� r)pr(1� p)n�r�1

=
n�1X

r=x�1

n!

r!(n� r � 1)!
p
r(1� p)n�r�1 �

n�1X

r=x

n!

r!(n� r � 1)!
p
r(1� p)n�r�1

=
n!

(x� 1)!(n� x)!
p
x�1(1� p)n�x

.

We can therefore compute

g
0(p) =

h(p/q)h0(p)� h(p)h0(p/q)/q

h(p/q)2
,
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and we note that

h(p/q)h0(p)� h(p)h0(p/q)/q

=
n!

(x� 1)!(n� x)!
p
x�1(1� p)n�x

nX

r=x

✓
n

r

◆⇣
p

q

⌘r⇣
1� p

q

⌘n�r

� n!

(x� 1)!(n� x)!

1

q

⇣
p

q

⌘x�1⇣
1� p

q

⌘n�x
nX

r=x

✓
n

r

◆
p
r(1� p)n�r

=
n!px�1(1� p)n�x(1� p/q)n�x

qx(x� 1)!(n� x)!

nX

r=x

✓
n

r

◆
p
r

⇢
1

(q � p)r�x
� 1

(1� p)r�x

�
� 0,

as required.

(b) Write F for the distribution function of W1, and let F̄ := 1 � F . We also write F̄ (x�) :=
limy%x F̄ (x). For a Borel measurable set A ✓ R, let N(A) :=

Pn
i=1 {Wi2A}. Then, for s � t,

P(W(m) � s|W(m) � t) =
P(W(m) � s)

P(W(m) � t)
=

P
�
N
�
[s,1)

�
� n�m+ 1

 

P
�
N
�
[t,1)

�
� n�m+ 1

 

=
P
�
Bin
�
n, F̄ (s�)

�
� n�m+ 1

 

P
�
Bin
�
n, F̄ (t�)

�
� n�m+ 1

 .

On the other hand,

P(W(m) � s|W(1) � t) =
P
�
W(m) � s,W(1) � t

�

P(W(1) � t)

=
P
�
N
�
(�1, t)

�
= 0, N

�
[s,1)

�
� n�m+ 1

 

P
�
N
�
(�1, t)

�
= 0
 

=

Pn
r=n�m+1

�n
r

�
F̄ (s�)r

�
F̄ (t�)� F̄ (s�)

 n�r

F̄ (t�)n

= P
�
Bin
�
n, F̄ (s�)/F̄ (t�)

�
� n�m+ 1

 
.

The first conclusion therefore follows immediately from (a), and the second conclusion is an immediate
consequence of the first.

Lemma 8. Let v = (v1, . . . , vp)> 2 Rp be a unit vector. There exists ` 2 {0, . . . , blog2 pc} such
that ����

⇢
j 2 [p] : v2j � 1

2` log2(2p)

����� � 2`.

Proof. The case p = 1 is trivially true, so we may assume without loss of generality that p � 2.
Let L := blog2 pc, b` := 2�` log�1

2 (2p) and n` :=
���j : v2j � b`

 �� for ` 2 {0, . . . , L}. Assume for a

contradiction that n` < 2` for all `. Then by Fubini’s theorem we have

kvk22 =
pX

j=1

Z 1

t=0
{v2

j�t} dt  n0(1� b0) +
LX

`=1

n`(b`�1 � b`) + pbL


LX

`=1

(2` � 1)(b`�1 � b`) + pbL =
L�1X

`=0

2`b` + (p� 2L + 1)bL  L+ 1

log2(2p)
 1.

Note that the penultimate inequality is strict if p+1 is not an integer power of 2 and the final inequality
is strict if p is not an integer power of 2. Since p � 2, it cannot be the case that we have equality in
both equalities, so kvk22 < 1, which contradicts the fact that v is a unit vector.
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Lemma 9. Define sequences (an)n2N0 and (bn)n2N0 as follows: a0 := b0 := 0, bn := (bn�1 +
1) {n/2{2⇠:⇠2N0}} and an := (an�1 + 1) {n/2{2⇠:⇠2N0}} + (bn�1 + 1) {n2{2⇠:⇠2N0}} for n 2 N. Then, we
have

n/2  an < 3n/4,

for all n � 2.

Proof. The two sequences (an)n2N0 and (bn)n2N0 are tabulated below.

n 0 1 2 3 4 5 6 7 8 . . . 2⇠ 2⇠ + 1 . . . 2⇠+1 � 1 . . .
an 0 1 1 2 2 3 4 5 4 . . . 2⇠�1 2⇠�1 + 1 . . . 3 · 2⇠�1 � 1 . . .
bn 0 0 0 1 0 1 2 3 0 . . . 0 1 . . . 2⇠ � 1 . . .

It is clear from the definition of (bn)n that b2⇠+i = i for ⇠ 2 N0 and 0  i  2⇠ � 1. Consequently, we
have a2⇠ = b2⇠�1 + 1 = 2⇠�1 and a2⇠+i = 2⇠�1 + i for ⇠ 2 N and 1  i  2⇠ � 1. Hence, we have

1

2
=

2⇠�1

2⇠
 a2⇠+i

2⇠ + i
=

2⇠�1 + i

2⇠ + i
 2⇠�1 + 2⇠ � 1

2⇠ + 2⇠ � 1
<

3

4
,

for all ⇠ 2 N and 0  i  2⇠ � 1 and the desired result follows.

Lemma 10. Let Z1, . . . , Zp
iid⇠ N (0, 1). Then for any a > 0 and x > 0, we have

P
✓ pX

j=1

Z
2
j {|Zj |�a} � 6pe�a2/8 + 4x

◆
 e

�x
.

Proof. This proof has some similarities with that of Lemma 17 of Liu, Gao and Samworth
(2021). By a Cherno↵ bound, we have for any u,� > 0 that,

P
✓ pX

j=1

Z
2
j {|Zj |�a} � u

◆
 e

��u
�
Ee�Z2

1 {|Zj |�a}
 p

. (10)

We write p(x) := (2⇡)�1/2
x
�1/2

e
�x/2 for the density of a �

2
1 distribution. For � 2 (0, 1/4], we bound

the moment generating function above as follows:

Ee�Z2
1 {|Zj |�a} =

Z 1

a2

e
�x
p(x) dx  1 +

Z 1

a2

(e�x � 1)p(x) dx = 1 +

Z 1

a2

1X

k=1

�
k
x
k

k!
p(x) dx

 1 +

Z 1

a2

�xe
�x
p(x) dx  1 +

�p
2⇡

Z 1

a2

x
1/2

e
�x/4

dx = 1 +
4�p
⇡

Z 1

a/
p
2
t
2
e
�t2/2

dt

= 1 +

r
8

⇡
�ae

�a2/4 + 4
p
2�
n
1� �

⇣
ap
2

⌘o
 1 +

r
8

⇡
�ae

�a2/4 + 2
p
2�e�a2/4

 1 +

✓
2

r
8

⇡
e
�1/2 + 2

p
2

◆
�e

�a2/8  1 + 5�e�a2/8
,

where we use the fact that xe�x2/4  2e�1/2
e
�x2/8 for x 2 R in the penultimate inequality. Hence, by

substituting this bound into (10), we have for every u > 0, that

P
✓ pX

j=1

Z
2
j {|Zj |�a} � u

◆
 exp

�
��u+ p log(1 + 5�e�a2/8)

 
 exp

�
��u+ 5p�e�a2/8

�
.

We set u = 6pe�a2/8 + 4x. If x  pe
�a2/8

/4, choose � = p
�1

xe
a2/8  1/4; if x > pe

�a2/8
/4, choose

� = 1/4. In both cases, we have

P
✓ pX

j=1

Z
2
j {|Zj |�a} � u

◆
 e

�x
,

as required.
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